

Network
Programming in

Python : The Basic

A Detailed Guide to Python 3 Network
Programming and Management

John Galbraith

www.bpbonline.com

http://www.bpbonline.com/

FIRST EDITION 2022
Copyright © BPB Publications, India
ISBN: 978-93-5551-257-4

All Rights Reserved. No part of this publication may be reproduced, distributed or transmitted in any
form or by any means or stored in a database or retrieval system, without the prior written permission
of the publisher with the exception to the program listings which may be entered, stored and executed
in a computer system, but they can not be reproduced by the means of publication, photocopy,
recording, or by any electronic and mechanical means.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The information contained in this book is true to correct and the best of author’s and publisher’s
knowledge. The author has made every effort to ensure the accuracy of these publications, but
publisher cannot be held responsible for any loss or damage arising from any information in this
book.
All trademarks referred to in the book are acknowledged as properties of their respective owners but
BPB Publications cannot guarantee the accuracy of this information.

www.bpbonline.com

http://www.bpbonline.com/

Dedicated to
My family

About the Author
John Galbraith is an architect, designer, engineer, artist, playwright, and
comedy writer. I’ve spent the last 14 years working with clients, vendors,
service integrators In other life, I am student at MIT.

About the Reviewer
Jomny Carle is an Enterprise architecture, music critic, poet and software
architect. He has successfully helped multiple customers in the design and
execution of their corporate strategies, in ways that correspond with both
security and business objectives, having over 22 years of industry expertise.

Acknowledgements
There are a few people I want to thank for the support they have given me
during the writing of this book. First and foremost, I would like to thank my
parents for continuously encouraging me to write the book. I could have
never completed this book without their support.
My gratitude also goes to the team at BPB Publications for being supportive
enough to provide me quite a long time to finish the book and also giving us
the opportunity and providing us the necessary support in writing this book.
We would like to thank our family members for the support they have
provided for us to focus on the book during our personal time.

Preface
Chapter 1: Introduction of Client-Server Networking: An Overview, you
will learn Modern network gear is capable of transmitting small messages
known as packets, which are typically no more than a few thousand bytes in
size. How can these little individual messages be merged to make
conversations between a web browser and a server, or an e-mail client and
your ISP’s mail server?
Chapter 2: in this section. It merely fixes the first of the two difficulties
mentioned above. It assigns port numbers to packets destined for different
services on a single system, as described in the next section. Nonetheless,
when it comes to packet loss, duplication, and ordering, network programs
employing UDP must fend for themselves.
Chapter 3: you will learn, It uses the same rules as UDP to incorporate port
numbers and provides ordered and reliable data streams that mask the fact
that the continuous stream of data has been cut into packets and then
reassembled at the other end from applications.
Chapter 4: After understanding the fundamentals of UDP and TCP, the two
major data transports accessible on IP networks, it’s time for me to take a
step back and discuss two larger challenges that must be addressed
regardless of whatever data transport you use. In this chapter, I’ll talk about
network addresses and the distributed service that converts names to raw IP
addresses.
Chapter 5: As you’ll learn in Chapter 5, whenever your software has to
seek for a DNS hostname, UDP is almost certainly participating in the
background. Although TCP has practically become the universal default
when two Internet programs need to interact, I’ll go over a few situations
where it’s not the best choice, in case your application falls into one of these
groups.
Chapter 6: This chapter will begin by defining TLS’s goals and discussing
the methods it employs to achieve them. Then you’ll learn how to activate
and configure TLS on a TCP socket using Python examples, both simple

and complicated. Finally, you’ll see how TLS is incorporated into the real-
world protocols covered in the rest of the book.
Chapter 7: Before going on to the true issue of how network servers can be
constructed as pieces of software, this chapter will spend only one part
presenting the topic of deployment.
Chapter 8: Despite its briefness, this chapter may be one of the most
important in the book. It examines two technologies—caches and message
queues—that have evolved into essential building blocks for high-volume
systems. The novel hits a turning point at this time.
Chapter 9: This is the first of three HTTP chapters. In this chapter, you’ll
learn how to use the protocol as a client application that wants to fetch and
cache documents as well as maybe submit queries or data to the server. You
will learn the protocol’s rules as a result of this approach.
Chapter 10: After that, we’ll look at the design and deployment of HTTP
servers in this chapter. In both chapters, the protocol will be examined in its
most basic conceptual form, that is, as a mechanism for retrieving or
uploading documents.
Chapter 11: There, you’ll learn about the programming patterns offered by
template libraries, forms, and Ajax, as well as web frameworks that attempt
to combine all of these patterns into a simple-to-program form.
Chapter 12: This chapter explains how e-mail messages are constructed,
with a focus on proper multimedia inclusion and internationalization. The
payload format for the protocols described in the following three chapters is
established by this.
Chapter 13: The Simple Mail Transfer Protocol (SMTP) is described in
this chapter, and it is used to transport e-mail messages from the machine
on which they are composed to the server that retains the message,
preparing it for reading by a specific recipient.
Chapter 14: you will learn about, illustrates how someone who is ready to
read their e-mail can download and view fresh messages that are waiting in
their in box on their e-mail server using the outdated, poorly built Post
Office Protocol (POP).
Chapter 15: IMAP stands for Internet Message Access Protocol, and it is a
better and more current choice for seeing e-mail that is hosted on your e-
mail server locally. IMAP not only allows you to fetch and view messages,

but it also allows you to mark them as read and store them in different
folders on the server.
Chapter 16: The command line is the topic of this chapter. It describes how
to connect to it via the network and provides enough information about its
normal behaviour to assist you overcome any frustrating obstacles you may
encounter while attempting to use it.
Chapter 17: FTP was originally used to fuel four basic activities. FTP was
first and mostly used for file downloads. Second, FTP was frequently
hacked to allow for anonymous uploads. Third, the protocol was frequently
used to enable the synchronization of whole file trees between different
computer accounts. Finally, FTP was utilized for what it was designed for:
interactive, full-featured file management.
Chapter 18: In these chapter we’ll learn about how to recover while having
errors in the network and message queues,RPC’s characters, and web
frameworks.

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/twfyjg1
The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Network-Programming-in-Python.
In case there's an update to the code, it will be updated on the existing
GitHub repository.
We have code bundles from our rich catalogue of books and videos
available at https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best
practices to ensure the accuracy of our content to provide with an indulging
reading experience to our subscribers. Our readers are our mirrors, and we
use their inputs to reflect and improve upon human errors, if any, that may
have occurred during the publishing processes involved. To let us maintain
the quality and help us reach out to any readers who might be having
difficulties due to any unforeseen errors, please write to us at :
errata@bpbonline.com
Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book
published, with PDF and ePub files available? You can upgrade to
the eBook version at www.bpbonline.com and as a print book

https://rebrand.ly/twfyjg1
https://github.com/bpbpublications/Network-Programming-in-Python
https://github.com/bpbpublications
mailto:errata@bpbonline.com
http://www.bpbonline.com/

customer, you are entitled to a discount on the eBook copy. Get in
touch with us at: business@bpbonline.com for more details.
At www.bpbonline.com, you can also read a collection of free
technical articles, sign up for a range of free newsletters, and receive
exclusive discounts and offers on BPB books and eBooks.

mailto:business@bpbonline.com
http://www.bpbonline.com/

Piracy
If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the
location address or website name. Please contact us at
business@bpbonline.com with a link to the material.

If you are interested in becoming an
author

If there is a topic that you have expertise in, and you are interested in
either writing or contributing to a book, please visit
www.bpbonline.com. We have worked with thousands of developers
and tech professionals, just like you, to help them share their insights
with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why
not leave a review on the site that you purchased it from? Potential
readers can then see and use your unbiased opinion to make purchase
decisions. We at BPB can understand what you think about our
products, and our authors can see your feedback on their book.
Thank you!
For more information about BPB, please visit www.bpbonline.com.

mailto:business@bpbonline.com
http://www.bpbonline.com/
http://www.bpbonline.com/

Table of Contents
1. Client-Server Networking: An Overview

Structure
Objective
The Foundation: Stacks and Libraries
Layers of Application
Talking a protocol
A Network Conversation in its Natural State
Turtles, Turtles, Turtles
The process of encoding and decoding
The Internet Protocol (IP)
Internet Protocol (IP Addresses)
Routing
Fragmentation of packets
Learning More About internet protocol
Conclusion

2. UDP(User Datagram Protocol)
Structure
Objective
Numbers of particular service on the particular system.
Communications connection point (Socket)
Clients who are promiscuous and unwelcome responses
Backoff, blocking, and timeouts are all examples of unreliability.
UDP Socket Connection
The Use of Request IDs Is a Good Idea
From Binding till Interfaces
Fragmentation of UDP
Options for Sockets
Broadcast
When Should We Use UDP?
Conclusion

3. Transmission control protocol (TCP)
Structure
Objective
How transmission control protocol works
When to use transmission control protocol
TCP Sockets Mean?
TCP Client and Server
Each conversation one socket.
Address that is in use.
From Binding to Interfaces
Deadlock
Half-Open Connections, Closed Connections
TCP Streams as Files
Conclusion

4. Domain name system & socket names
Structure
Objective
Sockets and Hostnames
Five Socket Coordinates
IPv6
Modern Address Resolution
Bind Your Server to a Port Using getaddrinfo()
To connect to a service, use getaddrinfo().
Getting a Canonical Hostname with getaddrinfo()
Other getaddrinfo() Flags
Primitive Name Service Routines
In Your Own Code, Use getsockaddr()
DNS Protocol
Why Shouldn’t Use Raw DNS?
Using Python to do a DNS query
Getting Mail Domains Resolved
Conclusion.

5. Data and Errors on the Internet
Structure
Objectives

Strings and Bytes
Character Strings
Network Byte Order and Binary Numbers
Quoting and framing
Pickles and Self-delimiting Formats
JSON And XML
Compression
Exceptions in the Network
Raising More Specific Exceptions
Network Exceptions: Detecting and Reporting
Conclusion

6. SSL/TLS
Structure
Objectives
What TLS Fails to Secure
What Is the Worst That Could Happen?
Producing Certificates
TLS Offloading
Default Contexts in Python 3.4
Wrapping Sockets in Different Ways
Ciphers chosen by hand and perfect forward security
Support for TLS Protocol
Details of Studying
Conclusion

7. Architecture of the Server
Structure
Objectives
A Few Remarks on Deployment
A Basic Protocol
A single-threaded server.
Multiprocess and Threaded Servers
The SocketServer Framework of the Past
Async Servers
Callback-Style asyncio
Coroutine-Style asyncio

The asyncore Legacy Module
The Best of Both Worlds
Under the Influence of inetd
Conclusion

8. Message Queues and Caches
Structure
Objectives
Using Memcached (memory caching)
Hashing and Sharding
Message Queues
Using Python’s Message Queues
Conclusion

9. HTTP Clients
Structure
Objectives
Python Client Libraries
Framing, Encryption, and Ports
Methods
Hosts and Paths
Status Codes
Validation and Caching
Encoding of Content
Negotiation of Content
Type of Content
Authentication over HTTP
Cookies
Keep-Alive, Connections, and httplib
Conclusion

10. Servers that handle HTTP
Structure
Objectives
Web Server Gateway Interface (WSGI)
Server-Frameworks that are asynchronous
Proxies (Forward and Reverse)

four architecture style.
Python on Apache
Pure-Python HTTP Servers on the Rise
The Advantages of Reverse Proxies
Platforms as a Service (PaaS)
The REST Question and GET and POST Patterns
Web Server Gateway Interface (WSGI)Without a Framework
Conclusion

11. www (world wide web)
Structure
Objectives
URLs and hypermedia
Creating and Parsing URLs
URLs that are relative
HTML(Hypertext Markup language)
Using a Database to Read and Write
A Horrible Internet Program (in Flask)
The HTTP Methods and Forms Of Dance
When Forms Use Inappropriate Methods
Cookies that are safe and those that are not
Cross-Site Scripting that isn’t persistent
Cross-Site Scripting that Remains Persistent
Forgery of Cross-Site Requests
The Enhanced Software
Django’s Payments Application
Choosing a Framework for a Website
WebSockets
Scraping the Internet
Obtaining Pages
Pages for Scraping
Recursive Scraping
Conclusion

12. E-mail Construction And Parsing
Structure
Objectives

Format of an Email Message
Putting Together an E-Mail Message
HTML and Multimedia Enhancement
Content Creation
E-mail Message Parsing
MIME Parts on the Move
Encodings for Headers
Dates Parsing
Conclusion

13. Simple Mail Transfer Protocol(SMTP)
Structure
Objectives
Webmail Services vs. E-mail Clients
The Command Line Was the Beginning
Clients are on the rise
The Transition to Webmail
SMTP’s Functions
E-mail transmission
The Envelope Recipient and the Headers
Several Hops
The SMTP Library is an introduction to the SMTP protocol
Error Handling and Debugging Conversations
Using EHLO to Gather Information
Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
SMTP authentication
SMTP Pointers
Conclusion

14. Post Office Protocol(POP)
Structure
Objectives
Compatibility of POP Servers
Authenticating and connecting
Getting Access to Mailbox Information
Messages are downloaded and deleted.
Conclusion

15. Internet Message Access Protocol (IMAP)
Structure
Objectives
IMAP in Python: An Overview
IMAPClient
Folder Inspection
UIDs vs. Message Numbers
Message Intervals
Information in Brief
Obtaining a Complete Mailbox
Individual Message Downloading
Messages Can Be Flagged and Deleted
Messages Can Be Deleted
Searching
Folders and Messages Manipulation
Asynchrony
Conclusion

16. SSH and Telnet
Structure
Objectives
Automation using the command line
Expansion of the Command Line and Quoting
Arguments to Unix commands can contain (almost) any character.
Characters I’ve Quoted for Protection
Windows’ Horrible Command Line
In a terminal, things are different.
Terminals are responsible for buffering
Telnet
SSH: The Secure Shell
SSH: A Quick Overview
Host Keys for SSH
Authentication with SSH
Individual Commands and Shell Sessions
SFTP (SSH File Transfer Protocol)
Additional Features
Conclusion

17. File Transfer Protocol (FTP)
Structure
Objectives
What to Do If You Can’t Use FTP
Channels of Communication
In Python, how to use FTP
Binary and ASCII Files
Binary Downloading (Advanced)
Data Uploading
Uploading Binary Data in an Advanced Way
Error Handling
Searching via directories
Detecting Directories and Downloading in Recursive Mode
Creating and deleting directories
Using FTP in a Secure Manner
Conclusion

18. Remote Procedure Call (RPC)
Structure
Objectives
RPC’s characteristics
XML-RPC
JSON-RPC
Data that Documents Itself
Talking About Objects: Pyro and RPyC
An RPyC Example
Message Queues, RPC, and Web Frameworks
Errors in the Network: How to Recover
Conclusion

CHAPTER 1
Client-Server Networking: An

Overview
The Python language is used to explore network programming in this book.
It covers the fundamental principles, modules, and third-party libraries that
you’ll need to communicate with remote machines via the Internet using the
most common communication protocols.
The book does not have enough room to teach you how to write in Python if
you have never seen the language or written a computer program before;
instead, it assumes that you have already learned something about Python
programming from the numerous great tutorials and books available. I hope
the Python examples in this book provide you some ideas for structuring
and writing your own code. But I’ll use advanced Python capabilities
without explanation or apologies—though I might point out how I’m
utilizing a certain approach or construction when I believe it’s particularly
intriguing or brilliant.
This book, on the other hand, does not begin by presuming you are familiar
with networking! You should be able to start reading this book at the
beginning and learn about computer networking along the way if you’ve
ever used a web browser or sent an e-mail. I’ll approach networking from
the perspective of an application programmer who is either creating a
network-connected service—such as a web site, an e-mail server, or a
networked computer game—or designing a client software to use one.
This book, on the other hand, will not teach you how to set up or configure
networks. The disciplines of network architecture, server room
administration, and automated provisioning are separate topics that do not
intersect with the discipline of computer programming as it is described in
this book. While Python is becoming a big part of the provisioning
landscape thanks to projects like OpenStack, SaltStack, and Ansible, if you
want to learn more about provisioning and its many technologies, you’ll

want to look for books and documentation that are specifically about
provisioning and its many technologies.

Structure
Layers of Application
Talking a protocol
A Network Conversation in its Natural State
Turtles, Turtles, Turtles
The Foundation: Stacks and Libraries
The process of encoding and decoding
The Internet Protocol (IP)
Internet Protocol (IP Addresses)
Routing
Fragmentation of packets
Learning More About internet protocol
Conclusion

Objective:
In this chapter you will learn to use layer of application used in python like
google geocoding, about internet protocol, how to encode and decode in
python, many thing of python libraries, routing etc.

The Foundation: Stacks and Libraries
When you first start learning Python network programming, there are two
notions that will come up repeatedly.

The concept of a protocol stack, in which basic network services are
utilized as the foundation for more complex services to be built.
The fact that you’ll frequently be utilizing Python libraries containing
previously written code—whether modules from Python’s built-in
standard library or packages from third-party distributions you

download and install—that already know how to communicate with
the network protocol you want to utilize.

In many cases, network programming simply get in choosing and
implementing a library that already implements the network functions you
require. The main goals of this book are to introduce you to a number of
important networking libraries for Python, as well as to teach you about the
lower-level network services that those libraries are based on. Knowing the
lower-level content is useful both for understanding how the libraries work
and for understanding what happens when anything goes wrong at a lower
level.
Let’s start with a basic example. The following is a mailing address:
Taj mahal
Agra, Uttar Pradesh
This physical address’s latitude and longitude are of importance to me.
Google, fortunately, has a Geocoding API that can do such a conversion.
What would you need to do in order to take advantage of Python’s network
service?
When considering a new network service, it’s always a good idea to start by
seeing if someone has already developed the protocol that your software
will need to speak—in this example, the Google Geocoding protocol. Begin
by going over the Python Standard Library’s documentation for everything
related to geocoding.
https://docs.python.org/3/library/
Is there any mention of geocoding? I don’t think so, either. Even if you
don’t always find what you’re searching for, it’s necessary for a Python
programmer to check through the Standard Library’s table of contents on a
regular basis because each read-through will help you get more comfortable
with the Python services.
Doug Hellmann’s “Python Module of the Week” blog is another excellent
resource for learning about Python’s possibilities thanks to its Standard
Library.
Because the Standard Library does not offer a package to assist you in this
scenario, you can look for general-purpose Python packages on the Python
Package Index, which is a wonderful resource for locating packages

https://docs.python.org/3/library/

provided by other programmers and organizations from all over the world.
Of course, you may look on the website of the vendor whose service you’ll
be using to see if it has a Python library for accessing it. Alternatively, you
may run a generic Google search for Python plus the name of whatever web
service you wish to utilize and see if any of the first few results point to a
package you should try.
In this example, I used the Python Package Index, which can be found at
the following address:
https://pypi.org/
I typed in geocoding and found a package called pygeocoder, which
provides a nice interface to Google’s geocoding features (albeit, as its
description indicates, it is not vendor-provided but rather was built by
someone other than Google).
https://pypi.org/project/pygeocoder/
Because this is such a typical scenario—finding a Python package that
sounds like it might already do precisely what you’re looking for and
wanting to try it out on your system—I thought I’d take a time to introduce
you to the best Python technology for fast trying out new libraries:
virtualenv!
Installing a Python package used to be a painful and irrevocable process
that necessitated administrative intervention.
privileges on your machine, and as a result, your Python installation on
your system has been permanently altered. After numerous months of
preparation,
If you’re doing a lot of Python work, your system Python installation could
end up being a wasteland of dozens of packages, all installed at the same
time.
by hand, and you may find that any new packages you try to install may fail
due to incompatibility.
with the outdated packages from a project that ended months ago hanging
on your hard drive
Python programmers who are cautious are no longer in this predicament.
Many of us only ever install virtualenv as a system-wide Python package.
Once virtualenv is installed, you can build as many small, self-contained

https://pypi.org/
https://pypi.org/project/pygeocoder/

“virtual Python environments” as you like, where you can install and
uninstall packages and experiment without polluting your systemwide
Python. When a project or experiment is completed, you just delete the
virtual environment directory associated with it, and your system is clean.
You’ll need to establish a virtual environment to test the pygeocoder
package in this situation. If this is the first time you’ve installed virtualenv
on your machine, go to this URL to download and install it:
https://pypi.org/project/virtualenv/
After you’ve installed virtualenv, use the following instructions to establish
a new environment. (On Windows, the virtual environment’s Python binary
directory will be called Scripts rather than bin.)
$ virtualenv –p python3 geo_env
$ cd geo_env
$ ls

bin/ include/ lib/
$. bin/activate

$ python -c ‘import pygeocoder’
Traceback (most recent call last):

File “<string>”, line 1, in
ImportError: No module named ‘pygeocoder’

The pygeocoder package is not yet available, as you can see. To install it,
use the pip command from within your virtual environment, which is now
on your path as a result of the activate command you ran.
$ pip install pygeocoder

Downloading/unpacking pygeocoder
Downloading pygeocoder-1.2.1.1.tar.gz
Running setup.py egg_info for package pygeocoder

Downloading/unpacking requests>=1.0 (from pygeocoder)
Downloading requests-2.0.1.tar.gz (412kB): 412kB downloaded
Running setup.py egg_info for package requests

Installing collected packages: pygeocoder, requests
Running setup.py install for pygeocoder

Running setup.py install for requests
Successfully installed pygeocoder requests
2

https://pypi.org/project/virtualenv/

The pygeocoder package will now be available in the
virtualenv’s python binary.
$ python -c ‘import pygeocoder’

Now that you’ve installed the pygeocoder package, you should be able to
run the search1.py programme, as shown in Listing 1-1.

Listing 1-1: Obtaining a Longitude and Latitude
#!/usr/bin/env python3

Network Programming in Python: The Basics

from pygeocoder import Geocoder

if __name__ == ‘__main__’:

address = taj mahal’

print(Geocoder.geocode(address)[0].coordinates)

By running it at the command line, you should see a result like this:
$ python3 search1.py (27.1751° N, 78.0421° E)
And there it is, right there on your computer screen, the answer to our
inquiry concerning the latitude and longitude of the address! The
information was obtained directly from Google’s web site. The first sample
software was a huge hit.
Are you frustrated that you opened a book on Python network programming
only to be instructed to download and install a third-party package that
turned a potentially intriguing networking challenge into a tedious three-
line Python script? Relax and unwind! Ninety percent of the time, you’ll
discover that this is how programming problems are addressed—by locating
other Python programmers who have already solved the problem you’re
encountering and then building smartly and succinctly on their solutions.
However, you are not quite finished with this example. You’ve seen how a
complicated network service can be accessed with relative ease. But what
lies beneath the attractive pygeocoder user interface? What is the procedure
for using the service? You’ll now learn more about how this complex
service is actually just the top tier of a network stack with at least a half-
dozen additional layers.

Layers of Application

To tackle a problem, the first application listed employed a third-party
Python library acquired from the Python Package Index. It was well-versed
in the Google Geocoding API and its usage guidelines. But what if that
library didn’t exist at all? What if you had to create your own client for
Google’s Maps API?
Look at search2.py, which is shown in Listing 1-2, for the answer. Instead
of employing a geocoding-aware third-party library, it uses the popular
requests library, which is the foundation for pygeocoding and, as you can
see from the pip install line, is already installed in your virtual environment.

Listing 1-2. Using the Google Geocoding API to get a JSON Document
#!/usr/bin/env python3

Network Programming in Python: The Basics

import requests

def geocode(address):

base = ‘https://nominatim.openstreetmap.org/search’

parameters = {‘q’: address, ‘format’: ‘json’}

user_agent = ‘ Client-Server Networking: An Overview

search2.py’

headers = {‘User-Agent’: user_agent}

response = requests.get(base, params=parameters,

headers=headers)

reply = response.json()

print(reply[0][‘lat’], reply[0][‘lon’])

if __name__ == ‘__main__’:

geocode(‘taj mahal’)

When you run this Python program, you’ll get a result that’s very similar to
the first script.
$ python3 search2.py
{‘lat’: 27.1751° N, ‘lng’: - 78.0421° E }

The results aren’t identical—for example, you can see that the JSON data
encoded the result as a “object” that requests has handed to you as a Python
dictionary. However, it is evident that this script achieves roughly the same
result as the previous one.

The first thing you’ll notice about this code is that the higher-level
pygeocoder module’s semantics are missing. If you don’t look attentively at
this code, you might not see that it’s even asking for a mailing address!
Unlike search1.py, which requested for an address to be converted to
latitude and longitude, the second listing meticulously constructs both a
base URL and a series of query parameters whose purpose may not be
obvious unless you’ve read the Google documentation. By the way, if you
want to read the documentation, the API is explained here:
https://developers.google.com/maps/documentation/geocoding/

If you look closely at the dictionary of query parameters in search2.py,
you’ll notice that the address parameter gives you the specific mailing
address you’re looking for. The other argument tells Google that you’re not
using a mobile device location sensor to pull data for this location query.
You manually call the response when you obtain a document as a result of
looking for this URL. To convert it to JSON, use the json() method, and
then dive into the resultant multilayered data structure to discover the
correct element that holds the latitude and longitude.
The search2.py script then accomplishes the same thing as search1.py, but
instead of using addresses and latitudes, it discusses the very gritty details
of generating a URL, obtaining a response, and parsing it as JSON. When
you go down a layer of a network stack to the layer behind it, there is a
common difference: where the high-level code talked about what a request
meant, the lower-level code can only see the specifics of how the request is
produced.

Talking a protocol
As a result, the second example script generates a URL and retrieves the
document associated with it. That action appears to be pretty
straightforward, and your web browser does its best to make it appear so.
Of fact, the real reason a URL may be used to download a document is that
it is a kind of recipe that defines where to find—and how to fetch—a
specific document on the Internet. The URL begins with the name of a
protocol, then the name of the computer on which the document is stored,
and finally the path that identifies a specific document on that machine. The
URL offers instructions that inform a lower-level protocol how to find the

https://developers.google.com/maps/documentation/geocoding/

document, which is why the search2.py Python application is able to
resolve the URL and fetch the page at all.
The famous Hypertext Transfer Protocol (HTTP), which is the foundation
of practically all modern web connections, is the lower-level protocol that
the URL employs. In Chapters 9, 10, and 11 of this book, you’ll learn more
about it. HTTP offers the method that allows the Requests library to retrieve
the result from Google.
What do you think it would look like if you removed the layer of magic—
what if you just wanted to get the result through HTTP? As demonstrated in
Listing 1-3, the result is search3.py.

Listing 1-3. Using Google Maps with a Raw HTTP Connection
#!/usr/bin/env python3
Network Programming in Python: The Basics

import http.client
import json
from urllib.parse import quote_plus

base = ‘/search’

def geocode(address):
path = ‘{}?q={}&format=json’.format(base,
quote_plus(address))
user_agent = b’ Client-Server Networking: An Overview.py’
headers = {b’User-Agent’: user_agent}
connection =
http.client.HTTPSConnection(‘nominatim.openstreetmap.org’)
connection.request(‘GET’, path, None, headers)
rawreply = connection.getresponse().read()
reply = json.loads(rawreply.decode(‘utf-8’))
print(reply[0][‘lat’], reply[0][‘lon’])

if __name__ == ‘__main__’:
geocode(‘taj mahal’)

You’re directly manipulating the HTTP protocol in this listing, asking it to
connect to a specific computer, execute a GET request using a URL you’ve
created by hand, and then receive the response directly from the HTTP
connection. Instead of being able to provide your query parameters as

individual keys and values, you may now do so in a more simple manner.
You must insert them directly, by hand, in the path that you are seeking in a
dictionary by first writing a The arguments in the format name=value
separated by & characters are followed by a question mark (?)
The outcome of executing the program, on the other hand, is very similar to
that of the prior programs.
$ python3 search2.py
{‘lat’: 27.1751° N, ‘lng’: - 78.0421° E }

HTTP is just one of many protocols for which the Python Standard Library
has a built-in implementation, as you’ll see throughout this book. Instead of
having to worry about all of the specifics of how HTTP works, search3.py
allows you to just ask for a request to be sent and then inspect the response.
Because you have dropped down another level in the protocol stack, the
protocol details that the script must deal with are, of course, more primitive
than those of search2.py, but you can still rely on the Standard Library to
handle the actual network data and ensure that you do it right.

A Network Conversation in its Natural State
Of course, HTTP can’t only transport data between two devices in the air.
Instead, the HTTP protocol must rely on a far more basic abstraction. In
fact, it makes use of modern operating systems’ capabilities to provide a
plain-text network dialogue between two separate programmes over an IP
network using the TCP protocol. In other words, the HTTP protocol works
by specifying the exact text of messages that are sent back and forth
between two hosts that can communicate using TCP.
When you proceed below HTTP to investigate what happens underneath it,
you’re descending to the lowest level of the network stack, which you can
still readily reach from Python. Take a close look to search4.py, which can
be found in Listings 1-4. It sends the identical networking request to Google
Maps as the previous three applications, but it does so by sending a raw text
message over the Internet and receives a bundle of text as a response.
Listing 1-4. Using a Bare Socket to Communicate with Google Maps
#!/usr/bin/env python3
Network Programming in Python: The Basics
import socket

from urllib.parse import quote_plus

request_text = “””\
GET /maps/api/geocode/json?address={}&sensor=false
HTTP/1.1\r\n\
Host: maps.google.com:80\r\n\
User-Agent: search4.py (Network Programming in Python: The
Basics)\r\n\
Connection: close\r\n\
\r\n\
“””

def geocode(address):
sock = socket.socket()

sock.connect((‘maps.google.com’, 80))
request = request_text.format(quote_plus(address))
sock.sendall(request.encode(‘ascii’))
raw_reply = b’’
while True:

more = sock.recv(4096)
if not more:
break

raw_reply += more
print(raw_reply.decode(‘utf-8’))

if __name__ == ‘__main__’:
geocode(‘taj mahal’)

You’ve crossed a significant threshold by switching from search3.py to
search4.py. You were utilizing a Python library—written in Python itself—
in every prior program listing to speak a sophisticated network protocol on
your behalf. But now you’ve reached the bottom: you’re using the host
operating system’s raw socket() method to provide fundamental network
communications over an IP network. In other words, when writing this
network function in the C language, you’re employing the same methods
that a low-level system programmer would use.
Over the next few chapters, you’ll learn more about sockets. For the time
being, you can see that raw network communication in search4.py consists
of sending and receiving byte strings. The request is one byte string, and the

response is another huge byte string, which you simply print to the screen in
order to experience it in all of its low-level beauty. (For more information
on why you decode the string before printing it, see the section “Encoding
and Decoding” later in this chapter.) The HTTP request, whose content you
can see inside the sendall() function, consists of the term GET—the name
of the operation you want to perform—followed by the location of the
document you want fetched and the method you want to use to retrieve it
the version of http you support.
GET/maps/api/geocode/json?address=taj+mahal+&sensor=false
HTTP/1.1

Then there’s a series of headers with a name, a colon, and a value, followed
by a carriage-return/newline pair that closes the request.
Listing 1-5 shows the response, which will print as the script’s output if you
execute search4.py. Instead of writing the extensive text-manipulation code
that would be able to comprehend the response, I elected to simply display
the response to the screen in this example. I did this because I believed that
viewing the HTTP response on your screen would give you a far better
understanding of what it looks like than deciphering code designed to
analyse it.

Listing 1-5. The Result of running search4.py
HTTP/1.1 200 OK
Server: nginx
Date: Tue, 25 Jan 2022 22:50:14 GMT
Content-Type: application/json; charset=UTF-8
Transfer-Encoding: chunked
Connection: close
Access-Control-Allow-Origin: *
Access-Control-Allow-Methods: OPTIONS,GET

37c
[{“place_id”:188987579,”licence”:”Data © OpenStreetMap
contributors, ODbL 1.0.
https://osm.org/copyright”,”osm_type”:”way”,”osm_id”:375257537
,”boundingbox”:
[“27.1745358”,”27.1754823”,”78.0415593”,”78.0426212”],”lat”:”2
7.1750123”,”lon”:”78.04209683661315”,”display_name”:”Taj

Mahal, Taj Mahal Internal Path, Taj Ganj, Agra, Uttar Pradesh,
282001,
India”,”class”:”tourism”,”type”:”attraction”,”importance”:1.04
89056883572618,”icon”:”https://nominatim.openstreetmap.org/ui/
mapicons//poi_point_of_interest.p.20.png”},
{“place_id”:191576149,”licence”:”Data © OpenStreetMap
contributors, ODbL 1.0.
https://osm.org/copyright”,”osm_type”:”way”,”osm_id”:382063175
,”boundingbox”:
[“27.1674585”,”27.1682576”,”78.0506999”,”78.0507466”],”lat”:”2
7.1682576”,”lon”:”78.0507466”,”display_name”:”gali no 1, Taj
Ganj, Agra, Uttar Pradesh, 282001,
India”,”class”:”highway”,”type”:”residential”,”importance”:0.5
}]
0

The HTTP reply has a structure that is very similar to the HTTP request. It
starts with a status line and then moves on to a series of headers. Following
a blank line, the response content is displayed: a JavaScript data structure in
the simple JSON format that answers your query by describing the
geographic location supplied by the Google Geocoding API search.
Of course, all of these status lines and headers are the same low-level
details that Python’s httplib was handling in the previous listings. You can
see how communication would look if that layer of software was removed.

Turtles, Turtles, Turtles
I hope you’ve liked these first glimpses into the world of Python network
programming. Taking a step back, I can use this set of examples to illustrate
a few points about Python network programming.
First, you may have a better understanding of what the term protocol stack
means: it refers to the process of layering a high-level, semantically
sophisticated conversation (“I want the geographic location of this mailing
address”) on top of simpler, and more rudimentary, conversations that are
ultimately just text strings sent back and forth between two computers using
their network hardware.
The protocol stack you just looked at is made up of four different protocols.

On top of that, there’s the Google Geocoding API, which explains
how to express geographic inquiries as URLs that return JSON data
with coordinates.
URLs are unique identifiers for documents that may be retrieved over
HTTP.
HTTP uses raw TCP/IP sockets to support document-oriented
operations like GET.
TCP/IP sockets are only capable of sending and receiving byte strings.

Each layer of the stack, as you can see, makes use of the tools offered by
the layer below it and, in turn, provides capabilities to the layer above it.
A second point brought up by these examples is how comprehensive Python
support is for each of the network tiers you’ve just worked with. It was only
necessary to use a third-party library when using a vendor-specific protocol
and needing to format requests so that Google could understand them; I
chose requests for the second listing not because the Standard Library lacks
the urllib.request module, but because its API is overly clunky. . The
Python Standard Library already had good support for all of the previous
protocol levels you encountered. Python has functions and classes to help
you get the job done, whether you needed to fetch a document at a specific
URL or send and receive text over a raw network socket.
Third, when I forced myself to employ lower-level protocols, the quality of
my programmes deteriorated significantly. For example, the search2.py and
search3.py listings began to hard-code aspects like form structure and
hostnames in a way that is inflexible and may be difficult to maintain later.
Even worse, the code in search4.py includes a handwritten,
unparameterized HTTP request whose structure is utterly unknown to
Python. Of course, it lacks the actual logic required to process and evaluate
the HTTP response and comprehend any network error situations that may
arise.
This shows a point that you should keep in mind throughout the rest of the
book: correctly implementing network protocols is complex, and you
should utilise the Standard Library or third-party libraries wherever
possible. You will always be tempted to oversimplify your code, especially
when writing a network client; you will tend to ignore many error
conditions that may arise, to prepare only for the most likely responses, to

avoid properly escaping parameters because you fondly believe that your
query strings will only ever include simple alphabetic characters, and, in
general, to write very brittle code that knows as little about the service it is
talking to as is technical, and to write very brittle code that knows as little
about the service it is talking to You will benefit from all of the edge cases
and awkward corners that the library implementer has already discovered
and learned how to handle properly by instead using a third-party library
that has developed a thorough implementation of a protocol and has had to
support many different Python developers who are using the library for a
variety of tasks.
Fourth, it’s worth noting that higher-level network protocols, such as
Google’s Geocoding API for resolving a street address, work by concealing
the network layers behind them. You might not even realise that URLs and
HTTP are the lower-level techniques that are utilised to generate and
answer your queries if you’ve only ever used the pygeocoder library!
The right hiding of faults at those lower levels is a fascinating subject, the
answer to which differs depending on how thoroughly a Python library has
been constructed. Could a network issue that renders Google unreachable
from your location cause a raw, low-level networking exception in the
middle of code that’s merely trying to find the coordinates of a street
address trigger a raw, low-level networking exception? Or will all errors be
reclassified as a higher-level geocoding exception? As you progress through
this book, pay close attention to the topic of catching network problems,
particularly in the chapters in this first section that focus on low-level
networking.
Finally, we’ve arrived at the topic that will keep you busy for the rest of this
first chapter: the socket() interface used in search4.py isn’t the lowest
protocol level in use when you send this request to Google! Just as there are
network protocols functioning above raw sockets in the example, there are
protocols working beneath the sockets abstraction that Python cannot see
because your operating system maintains them.
The following layers operate behind the socket() API:

The Transmission Control Protocol (TCP) facilitates two-way byte-
stream conversations by transmitting (and perhaps re-sending),

receiving, and re-ordering tiny network communications known as
packets.
The Internet Protocol (IP) is a protocol that allows packets to be sent
between computers.
At the absolute bottom, the “link layer” is made up of network
hardware devices like Ethernet ports and wireless cards that can
deliver physical communications between directly connected
computers.

The rest of this chapter, as well as the two next chapters, will focus on the
lowest protocol levels. You’ll begin by looking at the IP level in this
chapter, then move on to examine how two quite distinct protocols—UDP
and TCP—support the two main types of conversations that can be had
between applications on two Internet-connected hosts in the next chapters.
But first, some background on bytes and characters.

The process of encoding and decoding
The Python 3 language distinguishes between strings of characters and low-
level bytes sequences. Bytes are the real binary numbers that computers
send back and forth during network connection. They are made up of eight
binary digits and range from 00000000 to 11111111, or 0 to 255 in decimal
terms. . Unicode symbols such as a (“Latin tiny letter A,” as defined by the
Unicode standard) or a (“right curly bracket”) or a (“right curly bracket”)
can be found in Python character strings (empty set). While each Unicode
character does have a numeric identifier called a code point, you can ignore
this as an internal implementation detail because Python 3 is careful to keep
characters behaving like characters at all times, and only when you ask will
Python convert characters to and from actual externally visible bytes.
Both of these operations have official names.
Decoding: When bytes are on their way into your application and you need
to figure out what they mean, decoding is what you do. Consider your
program as a traditional Cold War spy tasked with deciphering the
transmission of raw bytes arriving from across a communications channel
when it gets bytes from a file or over the network.

Encoding: Encoding is the process of converting character strings that are
ready to be presented to the outside world into bytes using one of the
several encodings that digital computers employ when they need to
communicate or store symbols using their only real currency, bytes.
Consider your spy having to convert their communication into numbers for
transmission, or symbols into a code that can be delivered over the network.
These two operations are available in Python 3 as a decode() function for
byte strings after reading them in and an encode() method for character
strings when it’s time to write them back out. Listings 1-6 show the
techniques in action.

Listing 1-6. Encoding Characters for Output and Decoding Input Bytes
#!/usr/bin/env python3

Network Programming in Python: The Basics

if __name__ == ‘__main__’:

Translating from the outside world of bytes to Unicode

characters.

input_bytes = b’\xff\xfe4\x001\x003\x00 \x00i\x00s\x00

\x00i\x00n\x00.\x00

input_characters = input_bytes.decode(‘utf-16’)

print(repr(input_characters))

Translating characters back into bytes before sending them.

output_characters = ‘We copy you down, Eagle.\n’

output_bytes = output_characters.encode(‘utf-8’)

with open(‘eagle.txt’, ‘wb’) as f:

f.write(output_bytes)’

The examples in this book make a conscious effort to distinguish between
bytes and characters. When you show their repr(), you’ll notice that byte
strings begin with the letter b and look like b’Hello,’ whereas true full-
fledged character strings have no first character and simply look like
‘world.’ To avoid misunderstanding between byte strings and character
strings, Python 3 only supports character strings for most string functions.

The Internet Protocol (IP)
Both networking and internetworking are really just sophisticated schemes
to allow resource sharing. Networking connects numerous computers with a

physical link so that they may communicate, while internetworking
connects adjacent physical networks to form a much bigger system like the
Internet.
Disk drives, RAM, and the CPU are all carefully guarded by the operating
system so that the separate programmes running on your computer can
access those resources without stomping on each other’s toes. The network
is another another resource that the operating system must safeguard in
order for applications to speak with one another without interfering with
other discussions on the same network.
Physical networking equipment, such as Ethernet cards, wireless
transmitters, and USB ports, that your computer uses to communicate are
each designed with an elaborate ability to share a single physical medium
among many distinct devices that want to interact. A DSL modem uses
frequency-domain multiplexing, a fundamental concept in electrical
engineering, to keep its own digital signals from interfering with the
analogue signals sent down the line when you talk on the phone. A dozen
Ethernet cards could be plugged into the same hub; 30 wireless cards could
be sharing the same radio channel; and a DSL modem uses frequency-
domain multiplexing, a fundamental concept in electrical engineering, to
keep its own digital signals from interfering with the analogue signals sent
down the line when you.
The packet is the fundamental unit of sharing across network devices—the
currency in which they exchange, if you will. A packet is a byte string that
can range in length from a few bytes to a few thousand bytes and is sent
across network devices as a single unit. Although specialised networks
exist, particularly in areas such as telecommunications, where each
individual byte coming down a transmission line may be routed to a
different destination, the more general-purpose technologies used to build
digital networks for modern computers are all based on the packet.
At the physical level, a packet usually has only two properties: the byte-
string data it contains and the address to which it is to be delivered. A
physical packet’s address is typically a unique identifier for one of the other
network cards connected to the same Ethernet segment or wireless channel
as the computer sending the packet. A network card’s job is to send and
receive such packets without requiring the computer’s operating system to

be concerned with the specifics of how the network operates with cables,
voltages, and signals.
So, what exactly is the Internet Protocol (IP)?
The Internet Protocol is a protocol for assigning a standard address system
to all Internet-connected computers throughout the world and allowing
packets to go from one end of the Internet to the other. A web browser, for
example, should be able to connect to a host from anywhere without ever
knowing which maze of network devices each packet passes through on its
way there. It’s rare for a Python programme to function at such a low level
that it sees the Internet Protocol in action, but understanding how it works is
useful at the very least.

Internet Protocol (IP Addresses)
Every computer connecting to the global network is given a 4-byte address
in the original version of the Internet Protocol. Such addresses are typically
represented by four decimal integers separated by periods, each
representing a single byte of the address. As a result, each number can vary
from 0 to 255. So, here’s how a conventional four-byte IP address looks:
130.207.244.244
People utilizing the Internet are typically provided hostnames rather than IP
addresses because solely numeric addresses are difficult for humans to
memorize. The user can just enter google.com and forget that this resolves
to an address such as 74.125.67.103, to which their computer can send
packets for transmission over the Internet.
Listing 1-7 shows a basic Python programme called getname.py that
requests the operating system—Linux, Mac OS, Windows, or whichever
system the programme is executing on—to resolve the hostname
www.python.org. The Domain Name System, the network service that
responds to hostname searches, is pretty sophisticated, and I’ll go over it in
more depth in Chapter 4.

Listing 1-7. Converting a Hostname to an IP Address
#!/usr/bin/env python3
Network Programming in Python: The Basics

import socket

http://www.python.org/

if __name__ == ‘__main__’:
hostname = ‘www.python.org’
addr = socket.gethostbyname(hostname)
print(‘The IP address of {} is {}’.format(hostname, addr))

For now, you just need to remember two things.

For starters, no matter how complex an Internet application appears to
be, the Internet Protocol always uses numeric IP addresses to direct
packets to their intended destination.
Second, the operating system normally handles the intricate intricacies
of how hostnames are resolved to IP addresses

Your operating system, like other aspects of Internet Protocol operation,
prefers to take care of them. Both you and your Python code are kept in the
dark about the details.
Actually, nowadays, the addressing issue is a little more complicated than
the simple 4-byte approach.
described. Because the world is running out of 4-byte IP addresses, an
expanded address scheme known as IPv6 is being implemented, which
allows for absolutely massive 16-byte addresses that should service
humanity’s needs for a very long time. They’re written in a different way
than 4-byte IP addresses, and look somewhat like this:
fe80::fcfd:4aff:fecf:ea4e

You won’t need to worry about the difference between IPv4 and IPv6 as
long as your code accepts IP addresses or hostnames from the user and
delivers them directly to a networking library for processing. Your Python
code’s operating system will recognise which IP version it is using and will
interpret addresses accordingly.
Traditional IP addresses are read from left to right, with the first one or two
bytes indicating an organisation and the next byte indicating the subnet on
which the target computer is located. The address is narrowed down to that
specific machine or service by the last byte. There are also a few IP address
ranges that have unique significance.

127.*.*.*: IP addresses that start with the byte 127 belong to a
particular, reserved range that is specific to the machine where an
application is operating. When your web browser, FTP client, or

Python programme connects to an address in this range, it’s requesting
to communicate with another service or programme on the same
machine. The IP address 127.0.0.1 is commonly used to represent
“this computer itself that this software is running on,” and may often
be reached under the hostname localhost.
10.*.*.*, 172.16–31.*.*, and 192.168.*.*: These IP addresses are
reserved for private subnets. The Internet’s administrators have made a
firm promise: no IP addresses in any of these three ranges will be
given to legitimate enterprises putting up servers or services. As a
result, these addresses are assured to have no relevance on the Internet
at large; they designate no host to which you may desire to connect.
As a result, you are free to utilise these addresses on any of your
organization’s internal networks if you want to be able to assign IP
addresses internally without having to make those hosts publicly
accessible.

Some of these private addresses are even likely to appear in your own
home: your wireless router or DSL modem will frequently assign IP
addresses from one of these private ranges to your home computers and
laptops, masking all of your Internet traffic behind the single “real” IP
address that your Internet service provider has assigned to you.

Routing
When an application requests that data be sent to a specific IP address, the
operating system must determine how to transport that data through one of
the physical networks to which the computer is connected. Routing is the
process of deciding where to send each Internet Protocol packet based on
the IP address that it specifies as its destination.
Most, if not all, of the Python code you create during your career will run
on hosts at the edge of the Internet, connected to the rest of the world by a
single network interface. Routing becomes an easy decision for such
machines.

If the IP address begins with 127.*.*.*, the operating system
recognises the packet as being for another application on the same
machine. It will be passed immediately to another programme via an

internal data copy by the operating system, rather than being sent to a
real network device for transmission.
If the IP address belongs to the same subnet as the machine, the
destination host can be discovered by checking the local Ethernet
segment, wireless channel, or whatever local network is in use, and
delivering the packet to a machine that is locally connected.
If not, the packet is forwarded to a gateway machine that connects
your local subnet to the rest of the Internet. After that, it will be up to
the gateway machine to decide where the packet should be sent.

Routing is, of fact, only as straightforward at the Internet’s edge, where the
only decisions are whether to keep the packet on the local network or send
it flying over the Internet. You can imagine that routing decisions for the
specialised network devices that make up the Internet’s backbone are
significantly more complicated! Extensive routing tables must be
constructed, consulted, and constantly updated on the switches that connect
entire continents in order to know that packets destined for Google go in
one direction, packets directed to an Amazon IP address go in another, and
packets directed to your machine go in yet another. run on Internet
backbone routers, thus you’ll almost always see the simpler routing
scenario described above in operation.
In the preceding paragraphs, I was a little hazy on how your computer
determines whether an IP address belongs to a local subnet or should be
transmitted through a gateway to the rest of the Internet. I’ve been writing
the prefix followed by asterisks for the sections of the address that could
vary to show the concept of a subnet, where all of the hosts have the same
IP address prefix. . Of all, your operating system’s network stack’s binary
logic does not actually insert little ASCII asterisks into its routing table!
Subnets are defined instead by combining an IP address with a mask that
specifies how many of the address’s most significant bits must match in
order for a host to belong to that subnet. You can readily read subnet
numbers if you keep in mind that each byte in an IP address comprises eight
bits of binary data. They appear as follows:

127.0.0.0/8: This pattern, which describes the previously discussed IP
address range and is reserved for the local host, specifies that the first

8 bits (1 byte) must match the number 127, while the subsequent 24
bits (3 bytes) can have any value.
192.168.0.0/16: Because the first 16 bits must match properly, this
pattern will match any IP address that belongs in the private 192.168
range. The last 16 bits of the 32-bit address can be set to any value.
192.168.5.0/24: This is a subnet address specification for a single
subnet. This is most likely the most widely used subnet mask on the
Internet. For an IP address to fall into this range, the first three bytes
of the address must match. Only the last byte (the last eight bits) of
each machine in this range is allowed to differ. This leaves a total of
256 distinct addresses. The.0 address is typically used as the subnet’s
name, and the.255 address is used as the destination for a “broadcast
packet” that addresses all of the subnet’s hosts (as you’ll learn in the
following chapter), leaving 254 addresses available for computer
assignment. Although the address.1 is commonly used for the gateway
that connects the subnet to the rest of the Internet, some businesses
and schools choose to use a different number.

In almost all circumstances, your Python code will simply rely on its host
operating system to make proper packet routing decisions, just as it does to
resolve hostnames to IP addresses in the first place.

Fragmentation of packets
Packet fragmentation is a final Internet Protocol concept worth mentioning.
While it’s meant to be a minor element that your operating system’s
network stack cleverly hides from your programme, it’s caused enough
problems throughout the Internet’s history that it needs at least a passing
mention.
Because the Internet Protocol enables very big packets—up to 64KB in
length—fragmentation is required because the actual network equipment
from which IP networks are created often accept considerably smaller
packet sizes. Ethernet networks, for example, can only handle packets of
1,500 bytes. As a result, Internet packets include a “don’t fragment” (DF)
flag that allows the sender to specify what should happen if the packet is
too large to fit through one of the physical networks connecting the source
and destination computers:

If the DF flag is not set, fragmentation is allowed, and when a packet
hits a network threshold beyond which it can no longer fit, the
gateway can divide it into smaller packets and designate them for
reassembling at the other end.
If the DF flag is set, fragmentation is forbidden, and if the packet
cannot fit, it will be discarded and an error message will be sent back
to the machine that sent the packet—in the form of an Internet Control
Message Protocol (ICMP) packet—so that it can try splitting the
message into smaller pieces and re-sending it.

The DF flag is normally set by the operating system, and your Python
programmes have no control over it. The logic that the system would
normally utilise is roughly as follows: If you’re conducting a UDP
conversation (see Chapter 2) where individual datagrams are flying over the
Internet, The operating system will leave DF unset so that each datagram
arrives at its destination in as many pieces as are required; however, if
you’re having a TCP conversation (see Chapter 3) with a long stream of
data that could be hundreds or thousands of packets long, the operating
system will set the DF flag so that it can choose exactly the right packet size
to keep the conversation flowing smoothly without fragmenting packets en
route, which would make the conversation unreliable.
The maximum transmission unit (MTU) is the largest packet that an
Internet subnet can accept, and there used to be a huge problem with MTU
processing that created problems for a lot of Internet users. In the 1990s,
Internet service providers (most notably phone companies selling DSL
connections) began to use PPPoE, a protocol that encapsulates IP packets in
a capsule with just 1,492 bytes of space instead of the full 1,500 bytes
allowed over Ethernet. Because they employed 1,500-byte packets by
default and had disabled all ICMP packets as a mistaken security measure,
many Internet sites were unprepared for this. As a result, their servers were
never notified of ICMP failures indicating that their big, 1,500-byte “don’t
fragment” packets were reaching consumers’ DSL lines but were too large
to fit over them.
The perplexing symptom of this condition was that little files or web pages
could be browsed without issue, and interactive protocols like Telnet and
SSH would work because both of these activities send small packets of less
than 1,492 bytes in the first place. The connection would freeze and become

unusable if the customer attempted to download a huge file or if a Telnet or
SSH command produced many screens full of output at once.
This problem is uncommon nowadays, but it demonstrates how a low-level
IP feature can cause user-visible symptoms and, as a result, why it’s
important to remember all of IP’s characteristics while creating and
troubleshooting network programs.

Learning More About internet protocol
In the following chapters, you’ll look at the protocol layers above IP and
learn how your Python applications can use the various services built on top
of the Internet Protocol to have various types of network talks. But what if
the preceding overview of how IP works has piqued your interest and you
want to learn more?
The requests for comment (RFCs) released by the Internet Engineering Task
Force (IETF) that describe how the protocol operates are the official
resources that describe the Internet Protocol. They are meticulously written
and, when combined with a strong cup of coffee and a few hours of
uninterrupted reading time, will reveal every last detail of how the Internet
Protocols work. The RFC that defines the Internet Protocol, for example, is
as follows:
RFCs are frequently cited in RFCs that describe greater specifics of a
protocol or addressing scheme, and RFCs will commonly cite other RFCs
that describe further details of a protocol or addressing scheme.
If you want to understand everything there is to know about the Internet
Protocol and the additional protocols that operate on top of it, TCP/IP
Illustrated, Volume 1: The Protocols (2nd Edition) by Kevin R. Fall and W.
Richard Stevens is a good place to start (Addison-Wesley Professional,
2011). It goes over all of the protocol processes in great depth, with only a
few gestures in this book. Other good books on networking in general, and
network configuration in particular, are available if setting up IP networks
and routing is something you do at work or at home to connect your
computers to the Internet.

Conclusion

Except for the most fundamental network functions, all network services
are built on top of another, more basic network function.
In the first few sections of this chapter, you looked at such a “stack.” The
TCP/IP protocol (which will be discussed in Chapter 3) allows byte strings
to be sent between a client and a server. The HTTP protocol (Chapter 9)
shows how a client can utilise such a connection to request a specific
document and the server can react by supplying it. When the document
returned by the server has to offer structured data to the client, the World
Wide Web (Chapter 11) encodes the instructions for retrieving an HTTP-
hosted document into a particular address called a URL, and the standard
JSON data format is common. And, on top of it all, Google provides a
geocoding service, which allows programmers to create a URL that Google
responds with a JSON document representing a geographic location.
Characters must be encoded as bytes whenever textual information is
transmitted over the network—or, for that matter, saved to persistent
byteoriented storage such as a disc. For expressing characters as bytes, there
are various widely used systems. The simple and limited ASCII encoding
and the powerful and general Unicode system, particularly its particular
encoding known as UTF-8, are the most frequent on the current Internet.
The decode() method in Python can be used to convert byte strings to real
characters, while the encode() method can be used to convert byte strings
back to normal character strings. . Python 3 strives to avoid immediately
converting bytes to strings—an action that would require it to just guess at
the encoding you want—so Python 3 code will often include more calls to
decode() and encode() than Python 2 code.
In order for the IP network to send packets on behalf of an application,
network administrators, appliance vendors, and operating system
programmers must collaborate to assign IP addresses to individual
machines, set up routing tables at the machine and router levels, and
configure the Domain Name System (Chapter 4) to associate IP addresses
with user-visible names. Python programmers should be aware that each IP
packet follows its own path over the network to its destination, and that a
packet may be fragmented if it is too large to fit through one of the “hops”
between routers.
In most applications, there are two main ways to use IP. They can either
utilise each packet as a standalone message or request a stream of data that

is automatically split into packets. These protocols are known as UDP and
TCP, and they are the subjects of Chapters 2 and 3 of this book.

CHAPTER 2
UDP(User Datagram Protocol)

In the previous chapter, we learned that modern network gear allows for the
transfer of little messages known as packets, which are typically only a few
thousand bytes in size. How can these little individual messages be merged
to make conversations between a web browser and a server, or an e-mail
client and your ISP’s mail server?
The IP protocol’s sole responsibility is to try to deliver each packet to the
appropriate machine. If distinct apps are to sustain dialogues, two more
capabilities are normally required, and it is the responsibility of the
protocols constructed on top of IP to offer these features.

The numerous packets that pass between two hosts must be labelled so
that web packets can be recognised from e-mail packets, and both can
be distinguished from any other network talks in which the computer
is involved. This is referred to as multiplexing.
Any damage that a stream of packets going separately from one host
to another can sustain must be repaired. Missing packets must be
resent until they are received. Packets that come out of order must be
reassembled in the proper sequence. Finally, duplicate packets must be
destroyed to ensure that no data in the data stream is duplicated. This
is referred to as providing dependable transportation.

Each of the two major protocols utilised atop IP gets its own chapter in this
book.
The User Datagram Protocol (UDP) is the first and is covered in this
chapter. It merely fixes the first of the two difficulties mentioned above. It
assigns port numbers to packets destined for different services on a single
system, as described in the next section. However, when it comes to packet
loss, duplication, and ordering, network programmes using UDP must fend
for themselves.

The second, the Transmission Control Protocol (TCP), is a protocol that
addresses both issues. It uses the same rules as UDP to incorporate port
numbers and provides ordered and reliable data streams that mask the fact
that the continuous stream of data has been split into packets and then
reassembled at the other end from applications. In Chapter 3, you’ll learn
how to use TCP.
It’s worth noting that a few specialised applications, such as multimedia
sharing among all hosts on a LAN, choose neither protocol and instead
construct an altogether new IP-based protocol that sits alongside TCP and
UDP as a new way of holding talks across an IP network. . This is not just
unique, but it is also unlikely to be developed in Python, hence protocol
engineering will not be covered in this book. The “Building and Examining
Packets” section near the conclusion of Chapter 1 ,which builds raw ICMP
packets and receives an ICMP reply, is the closest approach to raw packet
construction atop IP in this book.
I’ll be the first to admit that you’re unlikely to use UDP in your own
applications. If you believe UDP is a good fit for your application, you
should investigate message queues (see Chapter 8). Nonetheless, the
exposure to raw packet multiplexing that UDP provides is a necessary step
before you can be ready to learn about TCP in Chapter 3.

Structure
Numbers of particular service on the particular system.
communications connection point (Socket)
Clients who are promiscuous and unwelcome responses
Backoff, blocking, and timeouts are all examples of unreliability.
UDP Socket Connection
The Use of Request IDs Is a Good Idea
From Binding till Interfaces
Fragmentation of UDP
Options for Sockets
Broadcast
When Should We Use UDP?

Objective:
In these chapter we will learn about UDP socket connection,
communication connection point many methods of socket, ip address etc.

Numbers of particular service on the particular
system.
In both computer networking and electromagnetic signal theory, the
difficulty of discriminating between many signals using the same channel is
a common one. A multiplexing scheme is a system that permits numerous
talks to share a medium or mechanism. Radio signals can be distinguished
from one another by employing different frequencies, as was notably
discovered. The creators of UDP chose the crude method of marking each
and every UDP packet with a pair of unsigned 16-bit port numbers in the
range of 0 to 65,536 to distinguish different talks in the digital domain of
packets. The source port identifies the process or programme that sent the
packet from the source system, whereas the destination port indicates the
application that should receive the message at the destination IP address.
At the IP network layer, all that can be seen are packets flying toward a
certain host.
Source IP | Destination IP
The network stacks of the two interacting machines, on the other hand—
which must, after all, corral and wrangle so many machines—are a different
storey. distinct programmes that may be communicating—consider the
interaction to be between an IP address and a computer. Each machine has
an address and port number pair.
Source (IP: port number) | Destination (IP : port number)
The four values for these in arriving packets relating to a specific
conversation will always be the same. The two IP numbers and two port
numbers will simply be exchanged in the replies heading the other way. in
the fields for source and destination
Consider setting up a DNS server (Chapter 4) with the IP address
192.168.1.9 on one of your workstations to illustrate this concept. The
server will ask the operating system for permission to receive packets
arriving at the UDP port with the usual DNS port number: port 53, so that

other computers can find the service. Assuming that no other process is
currently using that port number, the DNS server will be given that port.
Consider a client machine with the IP address 192.168.1.30 that wishes to
send a query to the server. It will create a request in memory, then request
that the operating system transfer that block of data as a UDP packet.
Because the client must be identified when the packet returns, and because
the client has not requested a port number, the operating system assigns it a
random one, such as port 44137.
As a result, the packet will fly its way to port 53 with addresses like this:
Source (192.168.1.30:44137) | Destination (192.168.1.9:53)
Once it has constructed a response, the DNS server will request that the
operating system transmit a UDP packet with these two addresses reversed
so that the reply returns straight to the sender.
Source (192.168.1.9:53) | Destination (192.168.1.30:44137)
As a result, the UDP scheme is quite basic; all that is required to direct a
packet to its destination is an IP address and a port.
But how can a client programme figure out which port it needs to connect
to? There are three approaches in general.

many port numbers have been approved by the Internet Assigned
Numbers Authority (IANA) as the official, well-known ports for
various services. That’s why, in the preceding case, DNS was expected
on UDP port 53.
Automatic configuration: When a computer connects to a network
using a protocol like DHCP, the IP addresses of key services like DNS
are frequently learned. Programs can access these vital services by
pairing these IP addresses with well-known port numbers.
Manual configuration: For all situations not covered by the previous
two scenarios, an administrator or user will need to manually give an
IP address or a service’s associated hostname. In this sense, manual
configuration is taking place. For instance, every time you type the
name of a web server into your browser.
When deciding on port numbers, such as 53 for DNS, IANA considers
them to fall into one of two categories. There are three possible ranges
for both UDP and TCP port numbers.

The most significant and extensively utilised services are served by
well-known ports (0–1023). Normal user programmes cannot listen on
these ports on many Unix-like operating systems. This used to keep
unruly undergraduates on multiuser university PCs at bay. executing
apps that pretended to be critical system services Today, the same
caution applies. When hosting firms give out command-line Linux
accounts, this rule applies.
Operating systems don’t normally treat registered ports (1024–49151)
as special—anyone can use them. For example, a user may develop a
software that listens on port 5432 and claims to be a PostgreSQL
database. IANA, for example, can register them for specific services,
and IANA encourages that you do so. You should not use them for
anything other than their allocated service.
All other port numbers (49152–65535) are available for use. They’re
the pool from which current operating systems generate arbitrary port
numbers when a client doesn’t care what port is given to its outgoing
connection, as you’ll see.

When writing applications that accept port numbers from user input, such
as the command line or configuration files, it’s a good idea to include
human-readable names for well-known ports in addition to numeric port
numbers. These names are standard and can be obtained using Python’s
standard socket module’s getservbyname() method. You may find out the
port for the Domain Name Service by using this method.
>>> import socket

>>> socket.getservbyname(‘domain’)

53

The more sophisticated getaddrinfo() function, which is also provided by
the socket module, may also decode port names, as you’ll see in Chapter 4.
On Linux and Mac OS X devices, the database of well-known service
names and port numbers is normally kept in the file /etc/services, which you
can browse at your leisure. The first few pages of the file, in particular, are
packed with old protocols with reserved numbers despite the fact that they
haven’t received a packet addressed to them anywhere in the world in many
years. IANA also keeps an up-to-date (and usually far more thorough) copy
online at t www.iana.org/assignments/port-numbers.

http://www.iana.org/assignments/port-numbers

Communications connection point (Socket)
Python took an interesting option rather than trying to create its own
network programming API. At its most basic level, Python’s Standard
Library merely provides an object-based interface to all of the low-level
operating system calls that are commonly used to perform networking
activities on POSIX-compliant operating systems. The calls are even named
after the underlying processes that they encapsulate. One of the reasons
Python was such a breath of new air to those of us working in lower-level
languages in the early 1990s was its willingness to expose the classic
system calls that everyone already understood before it came on the scene.
Finally, a higher-level language existed that allowed us to make low-level
operating system calls whenever we required them, rather than forcing us to
utilise a cumbersome, underpowered, but apparently “prettier” language-
specific API. A single set of calls that worked in both C and Python was
much easier to remember.
On both Windows and POSIX systems (such as Linux and Mac OS X), the
underlying system calls for networking revolve around the concept of a
communications endpoint called a socket. Integers are used by the operating
system to identify sockets, but Python delivers a more useful socket.socket
object to your Python code. Internally, it saves the integer (you may peep at
it by calling its fileno() method) and uses it automatically whenever you
call one of its methods to request that a system call be done on the socket.
Observe The fileno() integer, which identifies a socket on POSIX
systems, is also a file descriptor selected from a pool of integers
representing open files. You might come across code that, in the case of
a POSIX environment, obtains this integer and then uses it to execute
non-networking operations on the file descriptor, such as os.read() and
os.write(), to perform filelike operations on what is actually a network
communications endpoint. You will, however, only conduct genuine
socket actions on your sockets because the code in this book is designed
to run on Windows as well.
What do sockets look like while they’re in use? Look at Listing 2-1 for an
example of a simple UDP server and client. You can see that it only uses the
Python Standard Library for one call, to socket.socket(), and that the rest of
the calls are to the methods of the socket object it returns.

Listing 2-1. On the Loopback Interface, there is a UDP server and a UDP
client.
#!/usr/bin/env python3
Network Programming in Python: The Basics

UDP client and server on localhost
import argparse, socket
from datetime import datetime
MAX_BYTES = 65535
def server(port):
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind((‘127.0.0.1’, port))
print(‘Listening at {}’.format(sock.getsockname()))
while True:
data, address = sock.recvfrom(MAX_BYTES)
text = data.decode(‘ascii’)
print(‘The client at {} says {!r}’.format(address, text))

text = ‘Your data was {} bytes long’.format(len(data))
data = text.encode(‘ascii’)
sock.sendto(data, address)

def client(port):
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
text = ‘The time is {}’.format(datetime.now())
data = text.encode(‘ascii’)
sock.sendto(data, (‘127.0.0.1’, port))
print(‘The OS assigned me the address
{}’.format(sock.getsockname()))
data, address = sock.recvfrom(MAX_BYTES) # Danger!
text = data.decode(‘ascii’)
print(‘The server {} replied {!r}’.format(address, text))

if __name__ == ‘__main__’:
choices = {‘client’: client, ‘server’: server}
parser = argparse.ArgumentParser(description=’Send and
receive UDP locally’)
parser.add_argument(‘role’, choices=choices, help=’which role
to play’)
parser.add_argument(‘-p’, metavar=’PORT’, type=int,
default=1060,

help=’UDP port (default 1060)’)
args = parser.parse_args()
function = choices[args.role]
function(args.p)

Because both the server and the client utilise only the localhost IP address,
which should be available whether or not you are connected to a real
network, you should be able to run this script right on your own computer,
even if you are not currently in the range of a network. First, try launching
the server
$ python udp_local.py server
Listening at (‘127.0.0.1’, 1060)

The server waits for an incoming message after printing this line of output.
The server was up and operating in three phases, as you can see in the
source code.
It started by calling socket() to construct a simple socket. This new socket
does not yet have an IP address or a port assigned to it.
If you try to communicate with it, it will throw an error because it is not yet
connected to anything. The socket is, at the very least, identified as being of
a specific type: its family is AF INET, which stands for “Internet Family of
Sockets.” It’s of the SOCK DGRAM datagram type, which means it’ll run
on an IP network using UDP. (See the next section for details on why I
insist on a one-to-one correlation between datagrams and packets in order to
calculate the maximum transmission unit [MTU].)
The bind() instruction is then used to request a UDP network address,
which is a basic Python tuple consisting of a str IP address (a hostname is
also fine, as you’ll see later) and an int UDP port number. If another
programme is already utilising that UDP port and the server script is unable
to access it, this step may fail with an error. If you run another copy of the
server, you’ll notice that it complains like this:
$ python udp_local.py server
Traceback (most recent call last):
...
OSError: [Errno 98] Address already in use

Of course, because UDP port 1060 is already in use on your PC, there’s a
chance you got this error the first time you started the server. When it came

to choosing the port number for this first example, I was in a bit of a pickle.
Of course, it had to be greater than 1023, because else you couldn’t run the
script without being a system administrator—and, as much as I like my
little example scripts, I don’t want anyone to run them as the system
administrator! I could have let the operating system determine the port
number (like I did for the client, as you’ll see shortly), had the server print it
out, and then required you to type it into the client as one of its command-
line arguments. However, I would not have been able to demonstrate you
the syntax for requesting a specific port number. Finally, I contemplated
selecting a port from the previously specified high-numbered “ephemeral”
range, but those are precisely the ports that might be in use by another
application on your machine, such as your web browser or SSH client, at
any given time.
As a result, it appeared that my only alternative was to use a port in the
reserved-but-unknown range above 1023. I had a look at the list and figured
you, gentle reader, weren’t running SAP BusinessObjects Polestar on the
laptop, desktop, or server where you’re running my Python scripts. If that’s
the case, use the –p option to pick a new port number for the server.
The getsockname() method of a socket can always be used by a Python
programme to retrieve a tuple that contains the current IP address and port
to which the socket is attached.
The server is now ready to receive requests after the socket has been
successfully bound! It enters a loop and calls recvfrom() repeatedly, telling
the function that it will happily accept messages up to a maximum length of
65,535 bytes—the maximum length that a UDP datagram may have—so
that you will always see the entire content of each datagram. Your
recvfrom() method will wait indefinitely until you send a message with a
client.
Recvfrom() returns the address of the client who sent you a datagram as
well as the datagram’s contents as bytes when a datagram arrives. . You
print the message to the console and then send a reply datagram to the client
using Python’s ability to convert bytes directly to strings.
So, let’s fire up our client and see what happens. Listing 2-1 also includes
the client code.

(I hope it’s not too confusing because this example, like others in the book,
mixes the server and client code into a single listing that may be selected
using command-line options.) This is the way I prefer since it keeps server
and client logic near together on the page and makes it simpler to
understand which server code snippets fit with which client code snippets.)
Open another command window on your machine while the server is still
operating, and try running the client twice in a row like this:
$ python udp_local.py client
The OS assigned me the address (‘0.0.0.0’, 46056)
The server (‘127.0.0.1’, 1060) replied ‘Your data was 46 bytes
long’
$ python udp_local.py client
The OS assigned me the address (‘0.0.0.0’, 39288)
The server (‘127.0.0.1’, 1060) replied ‘Your data was 46 bytes
long’

Each connection that the server serves should be reported in the server’s
command window.
The client at (‘127.0.0.1’, 46056) says ‘The time is 2014-06-
05 10:34:53.448338’
The client at (‘127.0.0.1’, 39288) says ‘The time is 2014-06-
05 10:34:54.065836’

The client code is slightly simpler than the server code, with only three
lines of networking code, but it does introduce two new concepts. The
sendto() method takes a message and a destination address from the client.
This one-time call is all that’s required to send a datagram flying toward the
server! However, if you’re going to communicate, you’ll need an IP address
and port number on the client side. As you can see from the output of the
call to getsockname, the operating system assigns one automatically (). The
client port numbers are all within the IANA range for “ephemeral” port
numbers, as promised. (At least they are on my laptop, running Linux; you
might get a different outcome if you use a different operating system.)
When you’re finished utilising the server, press Ctrl+C in the terminal
where it’s running to terminate it.

Clients who are promiscuous and unwelcome
responses
Listing 2-1’s client software is actually harmful! If you look at the source
code, you’ll notice that, while recvfrom() provides the incoming datagram’s
address, the function never validates the datagram’s source address to make
sure it’s a reply from the server.
You can check for this issue by delaying the server’s answer and seeing
whether someone else can provide a response that this naive client will
accept. On a less capable operating system, such as Windows, you’ll almost
certainly need to add a significant amount of time. To imitate a server that
takes a long time to respond, use the sleep() function between receive and
transmit on the server. However, once the server has established up its
socket on Mac OS X and Linux, you can simply suspend it with Ctrl+Z to
imitate a server that takes a long time to respond. As a result, start a new
server and then suspend it using Ctrl+Z.
$ python udp_local.py server
Listening at (‘127.0.0.1’, 1060)
^Z
[1] + 9370 suspended python udp_local.py server
$

If you run the client now, it will send a datagram and then hang while
waiting for a response.
$ python udp_local.py client
The OS assigned me the address (‘0.0.0.0’, 39692)

Assume you’re an attacker who wants to fabricate a response from the
server by jumping in and transmitting your datagram before the server can
respond. Because the client has told the operating system that it is willing to
receive any datagram and is not doing any sanity checks on the output, it
should believe that your phoney reply came from the server. A fast session
at the Python prompt can be used to send such a packet.
$ python3
Python 3.4.0 (default, jan 25 2021, 13:05:18)
[GCC 4.8.2] on linux

Type “help”, “copyright”, “credits” or “license” for more
information.
>>> import socket
>>> sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
>>> sock.sendto(‘FAKE’.encode(‘ascii’), (‘127.0.0.1’, 39692))
4

The client will quit instantly and joyfully interpret this third-party response
as the one it was expecting.
The server (‘127.0.0.1’, 37821) replied ‘FAKE’

You can now stop the server by typing fg to unfreeze it and allow it to
continue running (it will now see the client packet that has been queued and
will respond to it via the now-closed client socket). To kill it, press Ctrl+C
as usual.
It’s worth noting that everyone who can send a UDP packet to the client is
susceptible. This is not a circumstance in which a man-in-the-middle
attacker has control of the network and may counterfeit packets from bogus
addresses, which can only be avoided by utilising encryption (see Chapter
6). Rather, the data of an unprivileged sender who follows all of the
requirements and sends a packet with a legal return address is allowed.
A promiscuous client is a network client that listens for packets and accepts
or records every single one it sees, regardless of whether the packet is
appropriately addressed. We write these on purpose sometimes, as when
we’re doing network monitoring and want to see all of the packets coming
at a particular interface. Promiscuity, on the other hand, is a concern in this
scenario.
Only solid, well-written encryption should persuade your code that it is
communicating with the correct server. There are two short checks you can
do in the meanwhile. To begin, create or use protocols that provide a unique
identification or request ID in the request, which is then repeated in the
response. If the reply has the ID you’re seeking for, then someone who saw
your request—as long as the range of IDs is broad enough that someone
couldn’t simply flood you with hundreds or millions of packets having
every possible ID—someone who saw your request must at least have
composed it. Second, use connect() to prevent other addresses from sending
you packets by comparing the address of the reply packet to the address that
you gave it to (remember that tuples in Python can simply be ==

compared). Consider the following: For more information, see the sections
“Connecting UDP Sockets” and “Request IDs.”

Backoff, blocking, and timeouts are all examples
of unreliability.
There was no real way for packets to get lost because the client and server
in the previous sections were both running on the same machine and
communicating through its loopback interface—which is not a physical
network card that could experience a signalling glitch—so there was no real
way for packets to get lost in Listing 2-1. When packets can truly be lost,
how does code become more complicated?
Look at Listing 2-2 for an example. Rather than always responding to client
requests, this server chooses to respond to only half of them at random,
allowing you to learn how to implement reliability into your client code
without having to wait hours for a genuine dropped packet to occur on your
network!

Listing 2-2-UDP Server and Client on Different Machines.
#!/usr/bin/env python3
Network Programming in Python: The Basics
UDP client and server for talking over the network
import argparse, random, socket, sys
MAX_BYTES = 65535
def server(interface, port):

sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind((interface, port))
print(‘Listening at’, sock.getsockname())
while True:
data, address = sock.recvfrom(MAX_BYTES)
if random.random() < 0.5:
print(‘Pretending to drop packet from {}’.format(address))
continue

text = data.decode(‘ascii’)
print(‘The client at {} says {!r}’.format(address, text))
message = ‘Your data was {} bytes long’.format(len(data))
sock.sendto(message.encode(‘ascii’), address)

def client(hostname, port):
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
hostname = sys.argv[2]

sock.connect((hostname, port))
print(‘Client socket name is {}’.format(sock.getsockname()))
delay = 0.1 # seconds
text = ‘This is another message’
data = text.encode(‘ascii’)
while True:
sock.send(data)
print(‘Waiting up to {} seconds for a reply’.format(delay))

sock.settimeout(delay)
try:
data = sock.recv(MAX_BYTES)
except socket.timeout:
delay *= 2 # wait even longer for the next request
if delay > 2.0:

raise RuntimeError(‘I think the server is down’)
else:
break # we are done, and can stop looping

print(‘The server says {!r}’.format(data.decode(‘ascii’)))
if __name__ == ‘__main__’:
choices = {‘client’: client, ‘server’: server}
parser = argparse.ArgumentParser(description=’Send and
receive UDP,’ ‘pretending packets are often dropped’)

parser.add_argument(‘role’, choices=choices, help=’which role
to take’)
parser.add_argument(‘host’, help=’interface the server
listens at;’

‘host the client sends to’)
parser.add_argument(‘-p’, metavar=’PORT’, type=int,
default=1060,

help=’UDP port (default 1060)’)
args = parser.parse_args()
function = choices[args.role]
function(args.host, args.p)

While the server in the previous example instructed the operating system
that it only wanted packets arriving through the private 127.0.0.1 interface
from other processes on the same machine, you can make this server more
generous by defining the server IP address as an empty string. This implies
“any local interface,” which on my Linux laptop means requesting the IP
address 0.0.0.0 from the operating system.
$ python udp_remote.py server “”
Listening at (‘0.0.0.0’, 1060)

When a request is received, the server will utilise a random() coin flip to
determine whether the request will be responded, so you don’t have to keep
the client running all day waiting for an actual packet to be dropped.
Whatever decision it makes, it displays a message on the screen so you can
keep track of what it’s doing. How can we create a “true” UDP client that
has to deal with the possibility of packet loss?
Because of UDP’s instability, the client must perform its request in a loop.
It must either be prepared to wait indefinitely for a response or be rather
arbitrary in determining when it has waited “too long” for a response and
must send another. This challenging decision is necessitated by the fact that
most clients are unable to discriminate between these three distinct events:

The response is taking a long time to arrive, but it will be here soon.
The response, like the request, will never arrive because it was
misplaced.
The server is down and not responding to any requests.

As a result, a UDP client must decide on a timetable for sending duplicate
requests if it does not receive a response after a suitable amount of time. Of
course, doing so may waste the server’s time because the initial response
may be on its way, and the second copy of the request may lead the server
to undertake unnecessary redundant work. However, at some time, the
client must decide whether to retry the request or risk waiting indefinitely.
Rather than allowing the operating system to keep the socket paused
indefinitely during the recv() operation, this client first calls settimeout() on
the socket. This tells the system that the client does not want to be left
waiting for more than delay seconds inside a socket action, and that the call
should be interrupted with a socket. Once a call has been waiting for so
long, a timeout exception is thrown.

A caller is considered to be blocked when it waits for a network activity to
complete. The term “blocking” refers to a call like recv() that forces the
client to wait for new data. The distinction between blocking and
nonblocking network requests will loom large when you get to Chapter 7,
where server architecture is explained!
This particular customer has a tenth-of-a-second delay to begin with. In my
home network, where ping times are often a few dozen milliseconds, this
rarely causes the client to issue a duplicate request merely because the
response is late.
What happens if the timeout is reached is an important component of this
client software. It doesn’t simply start sending out repeat requests at a
predetermined period! Because congestion is the most common source of
packet loss—as anybody who has tried sending regular data upstream over
a DSL modem while images or movies are downloading knows—the last
thing you want to do is respond to a potentially dropped packet by sending
even more of them.
As a result, this client employs an exponential backoff strategy, in which its
attempts get less and less frequent. . This serves the critical benefit of
surviving a few missed requests or responses while allowing a congested
network to gradually recover as all active clients reduce their demands and
send fewer packets. Although there are more sophisticated exponential
backoff algorithms—for example, the Ethernet version of the algorithm
includes some randomness to ensure that two competing network cards do
not back off on the same schedule—the basic effect can be achieved quite
simply by doubling the delay each time a response is not received.
Please keep in mind that if the requests are being sent to a server that is 200
milliseconds away, this naïve method will always send at least two copies
of each request, because it will never learn that requests to this server take
longer than 0.1 seconds. If you’re developing a long-lived UDP client,
consider letting it remember how long the previous several requests took to
complete so that it can delay its first retry until the server has responded.
Give the hostname of the other machine on which you’re running the server
script to the Listing 2-2 client, as stated previously. This client may get
lucky and receive an immediate response.
$ python udp_remote.py client guinness

Client socket name is (‘127.0.0.1’, 45420)

Waiting up to 0.1 seconds for a reply

The server says ‘Your data was 23 bytes long’

However, it will frequently discover that one or more of its queries never
receive responses, forcing it to retry. You can even witness the exponential
backoff happening in real time if you closely observe its repeated attempts,
as the print statements that echo to the screen become more and more
slowly as the delay timer ramps up.
$ python udp_remote.py client guinness

Client socket name is (‘127.0.0.1’, 58414)

Waiting up to 0.1 seconds for a reply

Waiting up to 0.2 seconds for a reply

Waiting up to 0.4 seconds for a reply

Waiting up to 0.8 seconds for a reply

The server says ‘Your data was 23 bytes long’

You can check whether the requests are making it or whether you’ve
experienced a real packet drop on your network in the terminal where
you’re executing the server. When I conducted the previous test, I was able
to see that all of the packets had made it to the server’s console.
Pretending to drop packet from (‘192.168.5.10’, 53322)

Pretending to drop packet from (‘192.168.5.10’, 53322)

Pretending to drop packet from (‘192.168.5.10’, 53322)

Pretending to drop packet from (‘192.168.5.10’, 53322)

The client at (‘192.168.5.10’, 53322) says, ‘This is another

message’

What if the server is completely unavailable? Unfortunately, UDP does not
allow us to discriminate between a down server and a network that is
simply in such bad shape that all of our packets and responses are being
dropped. Of course, I don’t think we can blame UDP for this issue. After
all, the world itself has no means of distinguishing between something we
can’t detect and something that doesn’t exist! As a result, the client’s best
option is to give up after making enough attempts. Restart the client after
killing the server process.
$ python udp_remote.py client guinness

Client socket name is (‘127.0.0.1’, 58414)

Waiting up to 0.1 seconds for a reply

Waiting up to 0.2 seconds for a reply

Waiting up to 0.4 seconds for a reply

Waiting up to 0.8 seconds for a reply

Waiting up to 1.6 seconds for a reply

Traceback (most recent call last):

...

socket.timeout: timed out

The preceding exception resulted in the following exception:

Traceback (most recent call last):

...

RuntimeError: I think the server is down

Giving up makes sense only if your programme is attempting to complete a
brief task that requires it to produce output or return a result to the user. It’s
fine to have code that keeps retrying “forever” if you’re developing a
daemon programme that runs all day, such as a weather symbol in the
corner of the screen that displays the temperature and forecast obtained
from a remote UDP service. After all, a desktop or laptop machine may be
disconnected from the network for an extended length of time, and your
code may have to wait hours or days for the forecast server to respond.
If you’re writing daemon code that retries all day, don’t use a strict
exponential backoff, or you’ll quickly ramp up the delay to something like
two hours, and you’ll likely miss the entire half-hour period when the
laptop owner sits down in a coffee shop and you could have actually gotten
to the network. Instead, pick a maximum delay—say, five minutes—and
keep it there until the exponential backoff reaches it, ensuring that you
always attempt an update whenever the user has been on the network for
five minutes after being disconnected for a lengthy time.
You’ll be able to do a lot better than playing with timers and guessing when
the network will come back up if your operating system allows your
process to be alerted for events like the network coming back up.
Unfortunately, system-specific procedures like those are outside the scope
of this book, so let’s get back to UDP and a few more concerns it poses.

UDP Socket Connection
In the last section, you looked at Listing 2-2, which introduced another new
notion that needs to be explained. I’ve already talked about binding, both
the explicit bind() call that a server makes to get the address it wants to use

and the implicit binding that occurs when a client first tries to use a socket
and the operating system assigns it a random ephemeral port number.
The remote UDP client in Listing 2-2, on the other hand, makes use of a
new method that I haven’t covered yet: the connect() socket action. You can
see what it does quite well. Instead of having to use sendto() with an
explicit address tuple every time you want to send something to the server,
the connect() call informs the operating system of the remote address to
which you want to send packets ahead of time, allowing you to simply
supply data to the send() call without having to repeat the server address.
But connect() accomplishes something else significant that you won’t see
just looking at Listing 2-2: it solves the problem of a promiscuous client! If
you run the test you did in the “Promiscuity” section on this client, you’ll
see that it’s not vulnerable to receiving packets. . This is due to the second,
less visible result of using connect() to configure a UDP socket’s preferred
destination: once you’ve performed connect(), any incoming packets to
your port whose return address does not match the address to which you’ve
connected will be discarded by the operating system.
There are two techniques to create UDP clients that pay attention to the
return addresses of packets that are returned.

You may use sendto() to route each outgoing packet to a specified
destination, then use recvfrom() to receive the replies and compare
each return address to the list of servers to which you have outstanding
requests.
Alternatively, you can connect() your socket immediately after
creating it and use send() and recv() to interact (). Unwanted packets
will be filtered away by the operating system. Because connecting to
the same socket again does not add a second destination address, this
only works for communicating to one server at a time. Instead, it
completely deletes the original address, ensuring that no additional
correspondence from that address reaches your application.

You can use the getpeername() method of a UDP socket to remember the
address to which it was connected after connecting it with connect(). If you
call this on a socket that isn’t connected yet, be careful. The call will raise
socket.error instead of returning 0.0.0.0 or another wildcard response. There
are two final points to be addressed concerning the connect() function.

To begin with, connecting to a UDP socket does not transfer any data across
the network or do anything to alert the server that packets are on their way.
It merely stores the address in the operating system’s memory for eventual
use in send() and recv() calls ().
Second, keep in mind that connecting to a server—or even filtering out
undesired packets using the return address—is not a secure method! If there
is a hostile user on the network, it is usually simple for their machine to
create packets with the server’s return address, allowing their forged
responses to pass through your address filter.
Spoofing is the act of sending packets with the return address of another
computer, and it is one of the first things protocol designers must consider
when creating protocols that are supposed to be free of interference.
More information on this can be found in Chapter 6.

The Use of Request IDs Is a Good Idea
Both Listings 2–1 and 2–2 had plain ASCII text messages. However, if you
ever create your own UDP request and response scheme, you should
strongly consider assigning a sequence number to each request and ensuring
that the reply you accept has the same number. Simply copy the number
from each request into the appropriate reply on the server. This offers at
least two significant benefits.
For starters, it guards you against getting perplexed by duplicate responses
to queries that have been replayed numerous times by a client in an
exponential backoff loop.
It’s simple to understand how duplication could occur. Request A is sent to
you. You become bored while waiting for a response, so you submit
Request A again. Then you eventually get a response, which is A. You
suppose the first copy was misplaced, so you continue on your way.
What if, on the other hand, both requests were sent to the server and the
responses were a little late in arriving?
Have you received one of the two responses, but are you waiting for the
other? If you now send request B to the server and begin listening, you will
almost quickly receive duplicate reply A, which you will mistakenly believe
is the answer to the query you asked in request B. and you will become

confused. . You can end up entirely out of step from then on,
misinterpreting each response as referring to a different request than the one
you think it does!
Request IDs shield you from this. If you give the request ID #42496 to
every copy of request A and the request ID #42496 to every copy of request
B, If the programme loop waiting for the answer to B has ID #16916, then it
can simply keep deleting replies with IDs that don’t match. until it finally
receives one that matches #16916. This prevents duplicate responses, which
can occur not just if you asked the same inquiry twice, but also in the rare
instance where a redundancy in the network fabric generates two copies of
the packet somewhere between the server and the client.
Another use of request IDs, as discussed in the section “Promiscuity,” is to
provide a barrier against spoofing, at least when the attackers are unable to
read your packets. Of course, if they can, you’re absolutely lost: they’ll see
the IP, port number, and request ID of every packet you transmit and can
attempt sending phoney responses to any request they choose (hoping that
their responses arrive before the server’s, of course)! However, if the
attackers are unable to examine your traffic and must fire UDP packets at
your server blindly, a large request ID number can make it far less probable
for your client to accept their response.
You’ll notice that the request IDs I used in the article weren’t in any
particular order or were easy to predict. Because of these traits, an attacker
will have no notion what sequence number is most likely. You make an
attacker’s task lot easy if you start with 0 or 1 and count upward from there.
To create huge integers, consider using the random module instead. If your
ID number is a random number between 0 and N, an attacker’s likelihood of
reaching you with a valid packet is at most 1/N, and may be substantially
lower if he or she needs to attempt all conceivable port numbers on your
system.
Of course, none of this is true security; it only protects you from naive
spoofing assaults by those who are unable to see your network traffic. Even
if attackers can monitor your traffic and insert their own messages
whenever they want, real security protects you. In Chapter 6, you’ll learn
about real-world security.

From Binding till Interfaces

So far, you’ve seen two alternatives for the IP address used in the server’s
bind() method. You can use ‘127.0.0.1’ to specify that you only want
packets from other programmes running on the same machine, or an empty
string “ as a wildcard to specify that you want packets arriving at the server
via any of the server’s network interfaces.
There is a choice. You can specify an IP address for one of the machine’s
external IP interfaces, such as its Ethernet or wireless card, and the server
will only listen for packets destined for that IP address. You may have noted
that Listing 2-2 allows you to specify a server string for the bind() method,
allowing you to conduct some tests.
What happens if you just bind to an external interface? Use whatever your
operating system informs you is your system’s external IP address to run
the server:
$ python udp_remote.py server 192.168.5.130
Listening at (‘192.168.5.130’, 1060)

Connecting to this IP address from a different computer should function
perfectly.
$ python udp_remote.py client guinness
Client socket name is (‘192.168.5.10’, 35084)
Waiting up to 0.1 seconds for a reply
The server says ‘Your data was 23 bytes’

However, if you try to connect to the service via the loopback interface
while running the client script on the same machine, the packets would
never arrive.
$ python udp_remote.py client 127.0.0.1

Client socket name is (‘127.0.0.1’, 60251)

Waiting up to 0.1 seconds for a reply

Traceback (most recent call last):

...

socket.error: [Errno 111] Connection refused

Actually, the result is better than the packets never being delivered, at least
on my operating system. Because the operating system can detect if one of
its own ports is open without sending a packet over the network, a
connection to that port is immediately denied! However, be aware that
UDP’s ability to return “Connection rejected” is a loopback superpower that
you will never encounter on a real network. There, the packet must simply

be transmitted with no indication of whether or not it will be received at a
destination port. Restart the client on the same PC, but this time use the
box’s external IP address.
$ python udp_remote.py client 192.168.5.130

Client socket name is (‘192.168.5.130’, 34919)

Waiting up to 0.1 seconds for a reply

The server says ‘Your data was 23 bytes’

Do you see what’s going on? Locally running programmes are free to send
requests to any of the computer’s IP addresses, even if they’re only utilising
that IP address to communicate with another service on the same machine!
As a result, binding to an IP interface may restrict which external hosts can
communicate with you. However, it will not prevent chats with other clients
on the same workstation as long as they are aware of the IP address to
which they should connect.
What happens if two servers are started at the same time? Stop any current
scripts and try running two servers on the same machine. The loopback will
be connected to one of them.
$ python udp_remote.py server 127.0.0.1
Listening at (‘127.0.0.1’, 1060)

You can’t run a second server at that address now that it’s occupied,
because the operating system wouldn’t know which process should receive
any particular packet arriving at that address.
$ python udp_remote.py server 127.0.0.1
Traceback (most recent call last):
...

OSError: [Errno 98] Address already in use

But, perhaps even more shocking, you will not be able to run a server on the
wildcard IP address.
$ python udp_remote.py server
Traceback (most recent call last):
...

OSError: [Errno 98] Address already in use

This fails because the wildcard address includes 127.0.0.1, which clashes
with the address that the first server process already possesses. What if,
instead of trying to run the second server against all IP interfaces, you just

ran it against an external IP interface that the first server isn’t listening to?
Let us give it a shot.
$ python udp_remote.py server 192.168.5.130
Listening at (‘192.168.5.130’, 1060)

It was successful! Two servers with the same UDP port number are now
running on this machine, one tethered to the loopback interface and the
other peering outside for packets coming on the network to which my
wireless card has connected. You can start up even more servers, one for
each remote interface, if you chance to be on a system with many remote
interfaces.
Once these servers are up and running, try sending them some packets using
your UDP client. Only one server will get each request, and it will always
be the server that has the IP address to which you have sent the UDP
request packet.
The takeaway is that an IP network stack never considers a UDP port as a
stand-alone object that is either completely available or in use at any given
time. Instead, it thinks in terms of UDP “socket names,” which are always a
pair of IP interfaces (even the wildcard interface) and UDP port numbers.
Rather than the raw UDP ports being used, these socket identifiers must not
clash among the listening servers at any one time.
A final word of caution is in order. Given that binding your server to
interface 127.0.0.1 protects you from potentially dangerous packets
generated on the external network, you would believe that binding to one
external interface will protect you from malicious packets generated by
malcontents on other external networks. On a large server with several
network cards, for example, you could be tempted to bind to a private
subnet that faces your other servers, believing that this will prevent faked
packets from reaching your public IP address.
Unfortunately, life is not that straightforward. Inbound packets directed to
one interface may or may not be allowed to arrive at another interface,
depending on your operating system and how it is configured. It’s possible
that if packets claiming to be from other servers on your network emerge
through your public Internet connection, your system will cheerfully accept
them! To learn more about your specific situation, consult your operating
system documentation or your system administrator. If your operating

system does not provide security, you can set up and run a firewall on your
computer.

Fragmentation of UDP
So far in this chapter, I’ve assumed that UDP allows you to send raw
datagrams that are simply packaged as IP packets with only a little extra
information—a port for both the sender and receiver. However, you may
already be sceptical because the preceding programme listings indicated
that a UDP packet may be up to 64kB in size, whereas you are likely
already aware that your Ethernet or wireless card can only handle packets
of roughly 1,500 bytes.
While UDP sends small datagrams as single IP packets, it must break
bigger UDP datagrams into numerous small IP packets in order for them to
transit the network (as was briefly discussed in Chapter 1).
Large packets are more likely to be dropped as a result of this, because if
one of their pieces fails to reach its destination, the entire packet cannot be
reassembled and given to the listening operating system.
This process of fragmenting huge UDP packets so that they can fit on the
wire should be unnoticeable to your application, save for the increased risk
of failure. However, there are three scenarios in which it could be useful.

If you’re concerned about efficiency, you might want to keep your
protocol to tiny packets to reduce the likelihood of retransmission and
the time it takes the distant IP stack to reassemble your UDP packet
and deliver it to the waiting application.
If an ICMP packet is incorrectly denied by a firewall that would
ordinarily allow your host to autodetect the MTU between you and the
distant host (as was the case in the late 1990s), your larger UDP
packets may vanish without your knowledge. The MTU (maximum
transmission unit) or “biggest packet size” that all network devices
between two hosts will support is the MTU.

If your protocol has complete control over how data is split across
datagrams and you want to be able to auto-adjust the size based on the
actual MTU between two hosts, some operating systems allow you to

disable fragmentation and receive an exception if a UDP packet is too large.
You could then build datagrams that are smaller than the minimum unit.
This last option is supported by some operating systems, including Linux.
Consider Listing 2-3, which transmits a big datagram.

Listing 2-3:- Sending a Large UDP Packet.
#!/usr/bin/env python3
Network Programming in Python: The Basics
Send a big UDP datagram to learn the MTU of the network
path.
import IN, argparse, socket
if not hasattr(IN, ‘IP_MTU’):

raise RuntimeError(‘cannot perform MTU discovery on this
combination’ of operating system and Python distribution’)

def send_big_datagram(host, port):
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.setsockopt(socket.IPPROTO_IP, IN.IP_MTU_DISCOVER,
IN.IP_PMTUDISC_DO)
sock.connect((host, port))

try:
sock.send(b’#’ * 65000)
except socket.error:

print(‘Alas, the datagram did not make it’)
max_mtu = sock.getsockopt(socket.IPPROTO_IP, IN.IP_MTU)
print(‘Actual MTU: {}’.format(max_mtu))

else:
print(‘The big datagram was sent!’)

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Send UDP packet
to get MTU’)
parser.add_argument(‘host’, help=’the host to which to target
the packet’)

parser.add_argument(‘-p’, metavar=’PORT’, type=int,
default=1060,

help=’UDP port (default 1060)’)
args = parser.parse_args()
send_big_datagram(args.host, args.p)

When I run this application against a server on my home network, I notice
that my wireless network supports physical packets no larger than the 1,500
bytes that Ethernet-style networks normally support.
$ python big_sender.py guinness
Alas, the datagram did not make it
Actual MTU: 1500

It’s even more unexpected that my laptop’s loopback interface, which could
theoretically accommodate packets as large as my RAM, likewise imposes
an MTU.
$ python big_sender.py 127.0.0.1
Alas, the datagram did not make it
Actual MTU: 65535

However, the ability to examine the MTU is not universal; consult your
operating system documentation for more information.

Options for Sockets
The POSIX socket interface includes a variety of socket parameters that
affect network socket behaviour. The IP MTU DISCOVER setting shown in
Listing 2-3 is just the beginning. The options are obtained via Using the
parameters listed in your operating system’s documentation, use the Python
socket functions getsockopt() and setsockopt(). For these two system calls,
there are two lists. On Linux, look at the manual pages socket(7), udp(7),
and—once you get to the end—
https://manuals.sourceforge.net/manuals/https://manuals.sourceforge.nettcp
is the next chapter (7).
When establishing socket options, you must first identify the option group
in which they reside, and then name the actual option you want to set as a
later argument. The names of these groups can be found in your operating
system’s handbook. The set call, like getattr() and setattr() in Python,
merely accepts one extra argument than the get method.
value = s.getsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST)
s.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, value)

Many options are unique to individual operating systems, and they may be
picky about how they’re presented. Here are a few of the most popular
choices:

SO BROADCAST: This allows you to send and receive broadcast
UDP packets, which I’ll go over in the following section.
SO DONTROUTE: Only send packets that are addressed to hosts on
subnets to which this computer is directly connected. If this socket
option was set, my laptop, for example, would be willing to send
packets to the networks 127.0.0.0/8 and 192.168.5.0/24 at this time,
but not anywhere else because the packets would have to be routed
through a gateway.
SO TYPE: When supplied to getsockopt(), this determines whether a
socket is of type SOCK DGRAM, which can be used for UDP, or of
type SOCK STREAM, which supports TCP semantics (see Chapter
3).

Te following chapter will go over some more socket parameters that are
exclusive to TCP sockets.

Broadcast
The ability to support broadcast is one of UDP’s superpowers. Instead of
sending a datagram to a single host, you can address it to the entire subnet
to which your machine is connected and have the physical network card
broadcast the datagram so that it is seen by all attached hosts without
having to be duplicated to each one individually.
It should be noted right away that broadcast is now regarded obsolete due to
the development of a more sophisticated technology known as multicast,
which allows modern operating systems to better exploit the intelligence
embedded into many networks and network interface devices. . Multicast
can also work with hosts outside of the local subnet. However, if you want a
simple way to keep something on the local LAN up to date, such as gaming
clients or automated scoreboards, and each client can suffer the occasional
missed packet, UDP broadcast is a good option.
A server that can receive broadcast packets and a client that can transmit
them are shown in Listing 2-4. If you look closely, you’ll notice that there’s
only one major variation between this listing and previous listings’ tactics.
To enable broadcast, invoke the socket object’s setsockopt() method before
using it. Aside from that, the socket is used by both the server and the client
in a standard manner.

Listing 2-4. UDP Broadcast.
#!/usr/bin/env python3
Network Programming in Python: The Basics
UDP client and server for broadcast messages on a local LAN
import argparse, socket
BUFSIZE = 65535
def server(interface, port):
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.bind((interface, port))
print(‘Listening for datagrams at
{}’.format(sock.getsockname()))
while True:
data, address = sock.recvfrom(BUFSIZE)
text = data.decode(‘ascii’)
print(‘The client at {} says: {!r}’.format(address, text))

def client(network, port):
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1)
text = ‘Broadcast datagram!’
sock.sendto(text.encode(‘ascii’), (network, port))

if __name__ == ‘__main__’:
choices = {‘client’: client, ‘server’: server}
parser = argparse.ArgumentParser(description=’Send, receive
UDP broadcast’)
parser.add_argument(‘role’, choices=choices, help=’which role
to take’)
parser.add_argument(‘host’, help=’interface the server
listens at;’

‘ network the client sends to’)
parser.add_argument(‘-p’, metavar=’port’, type=int,
default=1060,
help=’UDP port (default 1060)’)
args = parser.parse_args()
function = choices[args.role]
function(args.host, args.p)

The first thing you should notice when using this server and client is that
they work precisely like a normal client and server if you merely use the
client to transmit packets to a specific server’s IP address.
The ability to send and receive explicitly addressed packets is neither
disabled or changed when a UDP socket is set to broadcast.
When you look at the settings for your local network and utilise its IP
“broadcast address” as the client’s destination, the magic happens. First, use
instructions like these to bring up one or two servers on your network.
$ python udp_broadcast.py server “”
Listening for broadcasts at (‘0.0.0.0’, 1060)

Then, while those servers are up and running, send messages to each one
using the client. You’ll see that each message is delivered to only one
server.
$ python udp_broadcast.py client 192.168.5.10

When you utilise the local network’s broadcast address, however, you’ll see
that the packet arrives at all of the broadcast servers at the same time!
(However, no normal servers will see it—to be convinced, run a few clones
of the standard udp remote.py server while broadcasting.) The broadcast
address on my local network right now, according to the ifconfig command,
is:
$ python udp_broadcast.py client 192.168.5.255

And, sure enough, both servers indicate that they have received the
message. If your operating system makes determining the broadcast address
difficult, and you don’t mind broadcasting from all of your host’s network
ports, Python lets you use the special hostname ‘broadcast>’ when sending
with a UDP connection. When sending that name to your client, be sure to
quote it because the & and > characters are unique to any POSIX shell.
$ python udp_broadcast.py client “<broadcast>”
I’d show you if there was a platform-independent way to figure out each
connected subnet’s broadcast address. If you wish to do anything more
specific than use this unique ‘broadcast>’ string, you’ll have to examine
your individual operating system documentation.

When Should We Use UDP?

You could assume that sending short messages with UDP is a good idea.
Actually, UDP is only effective if your server sends one message at a time
and then waits for a response. If your application sends multiple messages
in a burst, an intelligent message queue like MQ will be more efficient
because it will set a short timer that allows it to bundle several small
messages into a single transmission, most likely over a TCP connection that
does a much better job of fragmenting the payload than you do!
However, there are a few compelling reasons to adopt UDP.

Because you’re using UDP to implement a protocol that already
exists.
Because you’re constructing a time-critical media stream with
redundancy that allows for occasional packet loss, and you don’t want
this second’s data to get stuck waiting for old data that hasn’t arrived
yet (as happens with TCP).
Why Because uncertain LAN subnet multicast is an excellent pattern
for your application, and UDP properly supports it.

Outside of these three scenarios, you should definitely look to the book’s
later chapters for ideas on how to create your application’s communication.
There’s an old adage that says if you can get a UDP protocol to work for
your application, you’ve probably just bad-mouthed TCP.

Conclusion
The User Datagram Protocol allows individual packets to be sent across an
IP network by user-level programmes. A client application typically
transmits a packet to a server, which responds using the return address
included in every UDP message.
The POSIX network stack provides access to UDP via the concept of a
“socket,” which is a communications endpoint that can transmit and receive
datagrams by sitting at an IP address and UDP port number (the socket’s
name or address). The built-in socket module in Python provides some
basic network activities.
Before it can receive incoming packets, the server must bind() to an address
and port. Client UDP programmes can just start sending, and the operating
system will assign them a port number.

UDP is unreliable since it is based on the actual behaviour of network
packets. Packets might be dropped due to a network transmission medium
fault or because a network segment becomes overburdened. Clients must
compensate for this by agreeing to resend requests until they receive a
response. Clients should utilise exponential backoff if they experience
recurring failure to avoid making a crowded network worse, and they
should also increase their initial wait time if round-trips to the server are
taking longer than they were willing to wait.
Request IDs are essential for preventing reply duplication, which occurs
when a reply you believed was lost turns up later and is misinterpreted for
the answer to your current issue. Request IDs, if chosen at random, can also
help protect against naive spoofing attempts.
When utilising sockets, it’s vital to distinguish the process of binding—in
which you take control of a specific UDP port for your own use—from the
act of connecting, which limits all responses received to only those from the
specific server with which you want to communicate.
The most powerful socket option for UDP sockets is broadcast, which
allows you to transmit packets to every host on your subnet without having
to send to each host separately. This is one of the few reasons why you
would choose UDP for new applications when building local LAN games
or other cooperative computation.

CHAPTER 3
Transmission control protocol (TCP)

The Internet’s workhorse is the Transmission Control Protocol (technically
TCP/IP, but referred simply as TCP for the rest of this book). It was first
established in 1974, and it uses the Internet Protocol’s (IP) packet
transmission technology to allow programmes to communicate using
continuous streams of data. TCP assures that the data stream will arrive
intact, with no information lost, duplicated, or out of order, unless the
connection dies or freezes due to a network fault.
TCP is almost always used by protocols that transport documents and files.
This includes web page delivery to your browser, file transmission, and all
main e-mail transmission protocols. TCP is also the foundation of choice
for protocols like SSH terminal sessions and many popular chat protocols,
which carry on long dialogues between people or computers.
It was once tempting to try to squeeze a little more speed out of a network
by constructing an application on top of UDP (see Chapter 2) and carefully
setting the size and timing of each individual datagram. Modern TCP
implementations, on the other hand, are more sophisticated, having profited
from almost 30 years of development, invention, and study. It’s uncommon
for anyone other than a protocol expert to improve on the performance of a
current TCP stack. Even performance-critical applications such as message
queues (Chapter 8) use TCP these days as their medium

Structure:
How transmission control protocol works
When to use transmission control protocol
TCP Sockets Mean?
TCP Client and Server
Each conversation one socket

Address that is in use
From Binding to Interfaces
Deadlock
Half-Open Connections, Closed Connections
TCP Streams as Files
Conclusion

Objective:
In these chapter we will learn how to facilitate the transmission and receipt
of data streams over the network between two sockets & learn about
deadlock stream as files in TCP. Sometime about TCP client and server.

How transmission control protocol works
Networks are temperamental animals, as you learned in Chapters 1 and 2.
They have a tendency to drop packets that you try to send through them.
They make extra copies of a packet on occasion. Furthermore, they
frequently deliver parcels out of sequence. When using a bare datagram
facility like UDP, your application code must be concerned about whether
each datagram arrives and have a mechanism in place to recover if it does
not. TCP, on the other hand, hides the packets themselves beneath the
protocol, allowing your application to simply stream data toward its
destination, certain that any missed data will be retransmitted until it arrives
successfully.
RFC 793 from 1981 is the original specification of TCP/IP, however
numerous subsequent RFCs contain specified extensions and
enhancements.
How does TCP ensure that a connection is secure? The following are its
basic tenets:

Instead of using sequential integers (1, 2, 3,...) to sequence packets,
TCP uses a counter that counts the number of bytes transmitted. This
allows the system on the receiving end to put them back together in
the right order and to notice missing packets in the sequence and
request that they be retransmitted. For example, a 1,024-byte packet

with the sequence number 7,200 would be followed by a packet with
the sequence number 8,224. This means that a busy network stack
doesn’t have to remember how a data stream was broken up into
packets. If a retransmission is requested, it can split the stream into
new packets in some other method (which may allow it to fit more
data into a packet if more bytes are now waiting for transmission), and
the receiver can still reassemble the packets.
In good TCP implementations, the initial sequence number is selected
at random so that villains cannot assume that every connection starts
at byte zero.
Rather than running very slowly in lock step, TCP sends complete
bursts of packets at a time before expecting a response. The size of the
TCP window refers to the amount of data a sender is willing to have
on the wire at any given time.
The TCP implementation on the receiving end can control the
transmitting end’s window size, slowing or pausing the connection.
This is referred to as flow control.
Finally, if TCP detects packets being dropped, it assumes the network
is becoming crowded and limits the amount of data it transfers every
second. On wireless networks and other media, where packets are lost
merely due to noise, this can be a tragedy. It can even sabotage
connections that were working properly until the router was rebooted.
For example, the endpoints are unable to communicate for more than
20 seconds. When the network is restored, the two will be reunited.
TCP peers will have determined that the network is severely
overburdened with traffic, and they will take action. When they re-
establish contact, they will initially refuse to send each other data at
any other frequency.

Beyond the behaviours just described, TCP’s design includes many more
nuances and details, but hopefully this description gives you a good idea of
how it works—even though, as you’ll recall, all your application will see is
a stream of data, with the actual packets and sequence numbers cleverly
hidden away by your operating system network stack.

When to use transmission control protocol

If your network applications are anything like mine, TCP will be used for
the majority of network connections. You could go your entire career
without intentionally creating a UDP packet from your code. (However, as
you’ll see in Chapter 5, if your application has to search up a DNS
hostname, UDP is very certainly engaged in the background.)
Although TCP has practically become the universal default when two
Internet programmes need to interact, I’ll go over a few situations where it’s
not the best choice, in case your application falls into one of these groups.
For starters, TCP is clunky for protocols in which clients want to send
single, tiny requests to a server and then stop communicating with it. The
famous SYN, SYN-ACK, and ACK sequence is used to establish a TCP
connection between two hosts.

SYN: “I’d want to speak; here’s the packet sequence number with
which I’ll begin.”
SYN-ACK: “All right, here’s the first sequence number I’ll use in my
direction.”
ACK: “All right!”

When the connection is complete, further three or four packets are required
to close it down—either a short FIN, FIN-ACK, and ACK, or a slightly
longer pair of distinct FIN and ACK packets in each direction. Just to
deliver a single request, a minimum of six packets are required! In such
instances, protocol designers quickly turn to UDP.
The question is whether a client would wish to start a TCP connection and
then utilise it to make several requests to the same server over the course of
several minutes or hours. Once the connection is established and the
handshake fee has been paid, each request and answer will only require a
single packet in each direction, taking advantage of all of TCP’s
retransmission, exponential backoff, and flow control capabilities.
When a long-term relationship between client and server is not required,
UDP shines, particularly when there are so many clients that a standard
TCP implementation would run out of memory if it had to keep up with a
distinct data stream for each active client.
The second time TCP is ineffective is when an application can do
something far more intelligent than merely retransmit data when a packet is

lost. Take, for example, an audio chat conversation. If a second’s worth of
data is lost due to a failed packet, just resending the same second of music
over and again until it arrives will be ineffective. Instead, the client should
fill that awkward second with whatever audio it can cobble together from
the packets that did arrive (a clever audio protocol will begin and end each
packet with a bit of heavily compressed audio from the preceding and
following moments of time to cover exactly this situation), and then
continue on as if the interruption never happened. This is impossible with
TCP, which will obstinately retransmit lost data even when it is far too old
to be of any use. The cornerstone of live-streaming multimedia over the
Internet is frequently UDP datagrams.

TCP Sockets Mean?
TCP employs port numbers to identify between various programmes
operating at the same IP address, just as UDP did in Chapter 2, and it
follows the same principles for well-known and ephemeral port numbers. If
you wish to go through the information again, go back to the section “Port
Numbers” in that chapter.
It only requires a single socket to speak UDP, as you saw in the last chapter:
a server can establish a UDP port and subsequently receive datagrams from
hundreds of different clients. While it is possible to connect() a datagram
socket to a specific peer so that the socket will always send() and recv()
packets sent back from that peer, the idea of a connection is merely for
convenience. Connect() has the same effect as your programme selecting on
its own to send to only one address using sendto() methods and then
ignoring responses from everyone other than that address.
With a stateful stream protocol like TCP, however, the connect() call
becomes the starting point for all subsequent network communication. It’s
the point at which your operating system’s network stack initiates the
handshake protocol described in the preceding section, which, if successful,
makes both ends of the TCP stream available for usage.
This means that, unlike with a UDP socket, a TCP connect() call can fail.
The remote host may or may not respond, or it may refuse to connect. n.
More esoteric protocol faults, such as the immediate receipt of a RST
(“reset”) packet, may also occur. Because establishing a permanent

connection between two hosts is required for a stream connection, the other
host must be listening and ready to accept your connection.
An incoming connection generates an even more significant event for a
Python application: the creation of a new socket! On the “server side,”
which is defined as the conversation partner not performing the connect()
call but receiving the SYN packet that the connect call initiates, an
incoming connection generates an even more significant event for a Python
application: the creation of a new socket! This is due to the fact that the
standard POSIX TCP interface uses two distinct types of sockets: “passive”
listening sockets and active “connected” sockets.

The passive socket, also known as a listening socket, keeps track of
the server’s “socket name”—the address and port number—at which it
is ready to accept connections. This type of socket will never be able
to receive or send data. It isn’t a representation of a live network chat.
Instead, it’s how the server informs the operating system that it’s
willing to accept inbound connections at a specific TCP port number.
A distant conversation partner with a certain IP address and port
number is attached to an active, connected socket. It can only be used
to communicate with that one partner, and it can be read and written to
without having to worry about how the data will be broken up into
packets. The stream resembles a pipe or file so closely that, on Unix
systems, a connected TCP socket can be handed to another application
that expects to read from a normal file and never realises it is
communicating over the network.

While the interface address and port number at which a passive socket is
listening make it unique—no one else is allowed to use those addresses and
ports—there might be many active sockets with the same local socket
name. A busy web server, for example, with a thousand HTTP connections,
will have a thousand active sockets all tied to its public IP address at TCP
port 80. The four-part coordinate, displayed here, is what distinguishes an
active socket:
(remote ip, remote port, local ip, local port)

The operating system uses this four-tuple to identify each active TCP
connection, and incoming TCP packets are checked to verify if their source

and destination addresses match any of the system’s currently active
connections.

TCP Client and Server
Take a look at Listing 3-1 for an example. I’ve combined what may have
been two independent programmes into a single listing, as I did in the last
chapter, because they share some common code and so that the client and
server code can be viewed together more simply.
Listing 3-1. Simple TCP Server and Client
#!/usr/bin/env python3
Network Programming in Python: The Basics
Simple TCP client and server that send and receive 16 octets
import argparse, socket
def recvall(sock, length):
data = b’’
while len(data) < length:

more = sock.recv(length - len(data))
if not more:
raise EOFError(‘was expecting %d bytes but only received’

‘ %d bytes before the socket closed’
% (length, len(data)))
data += more
return data

def server(interface, port):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind((interface, port))
sock.listen(1)
print(‘Listening at’, sock.getsockname())

while True:
sc, sockname = sock.accept()
print(‘We have accepted a connection from’, sockname)
print(‘ Socket name:’, sc.getsockname())

print(‘ Socket peer:’, sc.getpeername())
message = recvall(sc, 16)
print(‘ Incoming sixteen-octet message:’, repr(message))

sc.sendall(b’Farewell, client’)
sc.close()

print(‘ Reply sent, socket closed’)
def client(host, port):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((host, port))
print(‘Client has been assigned socket name’,
sock.getsockname())
sock.sendall(b’Hi there, server’)
reply = recvall(sock, 16)
print(‘The server said’, repr(reply))
sock.close()

if __name__ == ‘__main__’:
choices = {‘client’: client, ‘server’: server}
parser = argparse.ArgumentParser(description=’Send and
receive over TCP’)
parser.add_argument(‘role’, choices=choices, help=’which
role to play’)
parser.add_argument(‘host’, help=’interface the server
listens at;’

‘ host the client sends to’)
parser.add_argument(‘-p’, metavar=’PORT’, type=int,
default=1060,

help=’TCP port (default 1060)’)
args = parser.parse_args()
function = choices[args.role]
function(args.host, args.p)

In Chapter 2, I went over bind() in great detail since the address you specify
as its parameter controls whether distant hosts can try to connect to our
server or whether your server can connect to them is secured from external
connections and can only be contacted by other programmes operating on
the same computer. As a result, Chapter 2 began with safe programme
listings bound exclusively to the loopback interface and progressed from
there. moved on to more risky application listings that accepted connections
from other network hosts
However, in this case, I’ve integrated both options into a single listing. You
can bind to 127.0.0.1 or one of your machine’s external IP addresses using

the host argument from the command line, or you can enter a blank string to
indicate that you will accept connections from any of your machine’s IP
addresses. If you want to recall all of the rules, go back to Chapter 2 and go
through them again. They apply to both TCP and UDP connections and
sockets.
Your port number choice has the same weight as it did when you chose port
numbers for UDP in Chapter 2, and the symmetry between TCP and UDP
on the subject of port numbers is close enough that you can simply apply
the rationale you used then to understand why the same choice was made
here.
So, what’s the difference between the earlier efforts with UDP and this new
client and server, which are based on TCP instead?
The client has a similar appearance. It opens a socket, calls connect() with
the address of the server it wishes to interact with, and then sends and
receives data. But there are a few differences beyond that.
To begin with, the TCP connect() call is not the harmless bit of local socket
setting that it is in UDP, where it just sets a default remote address to be
used with any later send() or recv() operations, as I just mentioned.
Connect() is a real-time network action that initiates a three-way handshake
between the client and server machines to prepare them for communication.
This means that connect() can fail, as you can see by running the client
when the server isn’t up and running.
$ python tcp_deadlock.py client localhost
Sending 16 bytes of data, in chunks of 16 bytes
Traceback (most recent call last):
...

ConnectionRefusedError: [Errno 111] Connection refused

Second, you’ll see that this TCP client is significantly simpler than the UDP
client in one respect: it doesn’t need to account for missed packets. Because
of the guarantees provided by TCP, it can send() data without even checking
to see if the remote end has received it, and it can recv() without having to
think about retransmitting its request. The client can be confident that the
network stack will perform any necessary retransmissions to ensure that its
data is delivered.

Third, this programme is more complicated in one direction than the
comparable UDP code— which may surprise you because, with all of their
guarantees, TCP streams appear to be uniformly simpler for programmers
than UDP datagrams. TCP, on the other hand, considers your outgoing and
incoming data to be nothing more than streams with no beginning or finish,
so it feels free to divide them into packets anyway it sees fit. As a result,
send() and recv() now have a different meaning than before. They simply
meant “send this datagram” or “accept this datagram” in the case of UDP,
and each datagram was atomic: it arrived or did not as a self-contained unit
of data. Half-sent or half-received UDP datagrams will never be seen by an
application. To a UDP application, only fully entire datagrams are ever
transmitted.
TCP, on the other hand, may split its data stream into several packets of
varying sizes during transmission and then reassemble them progressively
on the receiving end. Despite the fact that this is extremely improbable with
the little 16-octet messages in Listing 3-1, your code should be prepared in
case it happens. What impact does TCP streaming have on the send() and
recv() functions?
Consider sending first (). When you call TCP transmit(), one of three
scenarios will occur in your operating system’s networking stack.

The data can be accepted right away by the local system’s networking
stack, either because the network card is free to transmit right away or
because the system has enough room to copy the data to a temporary
outgoing buffer so your programme can keep running. Because the
entire string is being communicated, send() returns instantly in these
circumstances and returns the length of your data string as its return
value.
Another option is that the network card is busy, and the socket’s
outgoing data buffer is full, and the system is unable to—or unwilling
to—allocate any more space. In this scenario, send() will simply stall,
putting your programme on hold until the data can be accepted for
transmission.
There’s also the possibility that the outgoing buffers are almost full,
but not quite, and that some of the data you’re trying to send will be
queued right away. The rest of the data block, though, will have to
wait. Send() completes instantly in this situation, returning the amount

of bytes taken from the beginning of your data string but leaving the
rest of the data unprocessed.

You can’t just call transmit() on a stream socket without inspecting the
return value because of this last possibility. You must include a send() call
within a loop that, if a partial transmission occurs, will continue to try to
send the remaining data until the complete byte string has been sent. This is
sometimes stated in networking code via a loop like the one below:
bytes_sent = 0
while bytes_sent < len(message):
message_remaining = message[bytes_sent:]
bytes_sent += s.send(message_remaining)

Fortunately, Python does not need you to perform this dance every time you
need to transfer a block of data. The socket implementation in the Standard
Library includes a friendly sendall() function(), which Listing 3-1 utilises
instead. Because sendall() is written in C, it is not only faster than doing it
yourself, but it also releases the Global Interpreter Lock during its loop,
allowing other Python threads to run without interference until all of the
data has been transferred.
Regrettably, there is no analogous Standard Library wrapper for the recv()
method, despite the fact that it has the same risk of incomplete
transmission. Recv() is implemented by the operating system using logic
that is quite similar to that used while transmitting.

If there is no data available, recv() will block and your programme
will pause until data arrives.
If there is enough data in the incoming buffer already, you will be
given as many bytes as you gave recv() permission to deliver.
If the buffer only contains some waiting data but not as much as you
gave recv() permission to return, you will be returned what is there
right away, even if it is not as much as you requested.

That’s why the recv() method must be used within a loop. The operating
system has no means of understanding that this simple client and server are
sending messages with a fixed width of 16 octets. Because it can’t predict
when the incoming data will finally add up to what your programme will

consider a full message, it offers you as much information as it can as soon
as possible.
Why is there a sendall() method in the Python Standard Library but none
for the recv() method? It’s most likely due to the rarity of fixed-length
communications these days. Most protocols have significantly more
intricate rules for delimiting parts of an incoming stream than a simple “the
message is always 16 bytes long” choice. The loop that performs recv() in
most real-world applications is more complicated than the one in Listing 3-
1, since a computer typically has to read or process part of the message
before it can anticipate how much more is coming.
An HTTP response, for example, contains headers, a blank line, and
whatever many additional bytes of data were supplied in the Content-
Length header. You don’t know how many times you should call recv()
until you’ve at least received the headers and processed them to determine
the content length, and this is something you should leave to your
application rather than the Standard Library.

Each conversation one socket.
When you look at the server code in Listing 3-1, you’ll notice that it follows
a significantly different pattern from the one you saw earlier, and the
difference is due to the definition of a TCP stream socket. Remember from
earlier that there are two types of stream sockets: listening sockets, which
are used by servers to make a port available for incoming connections, and
connected sockets, which reflect a server’s dialogue with a specific client.
You can see how this distinction is carried through in actual server code in
Listing 3-1. The connection, which may seem strange at first, is that a
listening socket provides a new, connected socket as the result returned by
accept()!Let’s look at the steps in the programme listing to see how the
socket actions are performed.
To claim a certain port, the server first calls bind(). Note that this does not
yet determine whether the programme will behave as a client or a server,
i.e., whether it will actively make connections or passively wait for
incoming connections. It simply reserves a certain port, either on a specific
interface or across all interfaces, for usage by this software. Clients can use
this method if they need to communicate with a server from a specific port

on their system rather than the ephemeral port number that would otherwise
be allocated to them.
The server announces that it wishes to use the socket to listen in the
following method call, which is when the real decision is made (). Running
this on a TCP socket completely changes its personality. The socket is
irreversibly modified when listen() is invoked, and it can no longer be used
to send or receive data. This socket object will no longer be attached to any
particular client. Instead, the socket’s accept() method—which you haven’t
seen until in this book because its sole purpose is to enable listening TCP
sockets—can now only be used to receive incoming connections. and each
of these calls waits for a new client to connect before returning a whole new
socket that regulates the new dialogue with them that has just begun.
As you can see from the code, getsockname() works with both listening and
connected sockets, and it tells you what local TCP port they’re using in
both cases. You can execute the getpeername() method at any time to learn
the address of the client to which a connected socket is tied, or you can save
the socket name returned as the second return value from accept (). You’ll
see that both values give you the same address when you run this server.
$ python tcp_sixteen.py server “”
Listening at (‘0.0.0.0’, 1060)
Waiting to accept a new connection
We have accepted a connection from (‘127.0.0.1’, 57971)
Socket name: (‘127.0.0.1’, 1060)
Socket peer: (‘127.0.0.1’, 57971)
Incoming sixteen-octet message: b’Hi there, server’
Reply sent, socket closed

Waiting to accept a new connection

The following output was obtained by having the client make only one
connection to the server:
$ python3 tcp_sixteen.py client 127.0.0.1
Client has been assigned socket name (‘127.0.0.1’, 57971)
The server said b’Farewell, client’

The rest of the server code shows that once accept() has returned a
connected socket, it behaves exactly like a client socket, with no more
asymmetries in their communication pattern. Recv() returns data as it

becomes available, while sendall() is the ideal way to send a large block of
data and ensure that it all gets sent.
When listen() was called on the server socket, you’ll notice that it was
given an integer argument. This value specifies how many waiting
connections should be allowed to stack up before the operating system
starts rejecting new connections and deferring any further three-way
handshakes. I’m using the extremely tiny value 1 in the examples since I
only support one example client connecting at a time, but when I talk about
network server design in Chapter 7, I’ll explore greater values for this call.
Once the client and server have said everything they need to say, they
close() their end of the connection, instructing the operating system to send
any leftover data in their output buffer, and then end the TCP session using
the FIN-packet shutdown method.

Address that is in use.
There is one last feature in Listing 3-1 that may pique your interest. Why
does the server ensure that the socket option SO REUSEADDR is set
before attempting to bind to a port?
If you comment out that line and then attempt starting the server, you can
observe what happens if you don’t set this option. At first glance, it may
appear to be of no concern. You will see no effect if all you do is stop and
start the server (here I am starting the server and then terminating it with a
simple Ctrl+C at the terminal’s prompt):
$ python tcp_sixteen.py server “”
Listening at (‘127.0.0.1’, 1060)
Waiting to accept a new connection
^C
Traceback (most recent call last):
...
KeyboardInterrupt
$ python tcp_sixteen.py server “”
Listening at (‘127.0.0.1’, 1060)
Waiting to accept a new connection

However, if you start the server, run the client against it, and then kill and
restart the server, you’ll see a significant change. When the server is

restarted, you will see the following error:
$ python tcp_sixteen.py server
Traceback (most recent call last):
...
OSError: [Errno 98] Address already in use

What an enigma! Why should a bind() that can be repeated indefinitely
become impossible just because a client has connected? If you continue to
operate the server without using the SO REUSEADDR option, the address
will not become available until several minutes after your last client
connection.
The reason for this restriction is that your operating system’s network stack
is extremely cautious. A server socket that is only listening can be turned
off and forgotten about right away. Even though both the client and the
server have closed their connections and delivered FIN packets in both
directions, a connected TCP socket that is currently communicating to a
client cannot disappear quickly. Why? Because the network stack has no
way of knowing whether or not the last packet, which closes the socket, was
received. If it is dropped by the network, the remote end may wonder what
is taking so long with the last packet and retransmit its FIN packet in the
hopes of eventually receiving a response.
A trustworthy protocol like TCP must logically have a point where it stops
talking; otherwise, systems would have to commit to an endless exchange
of “Okay, we both agree that we are all done, right?” messages until the
computers were ultimately shut down. Even the final packet may be lost
and need to be retransmitted several times before reaching the other end.
What is the answer?
The answer is that once a connected TCP connection is closed from your
application’s perspective, the operating system’s network stack preserves a
record of it in a waiting state for up to four minutes. These states are
referred to as RFC states in the RFC. TIME-WAIT and CLOSE-WAIT Any
final FIN packets can be correctly responded to while the closed socket is
still in either of these phases. If the TCP implementation just forgot about
the connection, it would be unable to respond to the FIN with an
appropriate ACK.
So, a server attempting to claim a port on which a live connection was
established within the last several minutes is actually attempting to claim a

port that is currently in use in some way. That’s why if you try to bind() to
that address, you’ll get an error. By using the socket option SO
REUSEADDR, you’re telling your application that it’s fine to hold a port
whose former connections may still be shutting down on some network
client. When writing server code, I always use SO REUSEADDR and have
never had any issues.

From Binding to Interfaces
The IP address that you couple with a port number when you perform a
bind() operation tells the operating system what network interfaces you are
willing to receive connections from, as I outlined in Chapter 2 when
discussing UDP. Listing 3-1’s sample calls used the local IP address
127.0.0.1, which isolates your code from connections from other machines.
You may test this by running Listing 3-1 in server mode and connecting to a
client from another machine, as shown earlier.
$ python tcp_sixteen.py client 192.168.5.130

Traceback (most recent call last):

...

ConnectionRefusedError: [Errno 111] Connection refused

You can see that the server does not even respond if it is running. Even if an
inbound connection to its port is rejected, the operating system does not
alert it. (Note that if your system has a firewall, the client may simply hang
when it tries to connect, rather than receiving a polite “Connection rejected”
exception to notify it what’s wrong!)
However, if you start the server with an empty hostname, which tells the
Python bind() procedure that you’re willing to accept connections across
any of your machine’s active network interfaces, the server will accept
connections. The client can then connect to another host successfully (the
empty string is supplied by giving the shell these two double quotes at the
end of the command line).
$ python tcp_sixteen.py server “”
Listening at (‘0.0.0.0’, 1060)
Waiting to accept a new connection
We have accepted a connection from (‘127.0.0.1’, 60359)
Socket name: (‘127.0.0.1’, 1060)
Socket peer: (‘127.0.0.1’, 60359)

Incoming sixteen-octet message: b’Hi there, server’
Reply sent, socket closed

Waiting to accept a new connection

As previously stated, my operating system uses the specific IP address
0.0.0.0 to mean “accept connections on any interface,” but your operating
system may use a different convention, which Python hides by allowing you
to use the empty string instead.

Deadlock
Deadlock is a term used in computer science to describe a situation in
which two programmes with limited resources are forced to wait on each
other indefinitely due to bad planning. When utilising TCP, it turns out that
this is a rather common occurrence.
As I previously indicated, standard TCP stacks use buffers to store
incoming packet data until an application is ready to read it, as well as to
gather outgoing data until the network hardware is ready to transmit an
outgoing packet. . These buffers are usually relatively small, and the system
is usually not willing to let programmes occupy all of RAM with unsent
network data. After all, it’s pointless to waste system resources generating
more data if the remote end isn’t ready to process it yet.
This limitation should not be a problem if you use the client-server pattern
depicted in Listing 3-1, in which each end reads the entire message from its
partner before turning around and delivering data in the opposite direction.
However, if you create a client and server that leave too much data waiting
without a plan in place to read it rapidly, you can quickly get into
difficulties.
Look at Listing 3-2 for an example of a server and client attempting to be a
little too clever without considering the repercussions. In this case, the
server’s author has done something rather clever. The server’s task is to
convert any amount of text into uppercase letters. Recognizing that client
requests can be arbitrarily big and that reading an entire stream of
information before processing it could cause the server to run out of
memory, the server reads and processes tiny chunks of 1,024 bytes of data
at a time.

Listing 3-2. TCP Server and Client That Can Deadlock
#!/usr/bin/env python3
Network Programming in Python: The Basics
TCP client and server that leave too much data waiting
import argparse, socket, sys
def server(host, port, bytecount):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind((host, port))
sock.listen(1)
print(‘Listening at’, sock.getsockname())
while True:
sc, sockname = sock.accept()
print(‘Processing up to 1024 bytes at a time from’, sockname)
n = 0
while True:
data = sc.recv(1024)
if not data:
break
output = data.decode(‘ascii’).upper().encode(‘ascii’)
sc.sendall(output) # send it back uppercase
n += len(data)
print(‘\r %d bytes processed so far’ % (n,), end=’ ‘)
sys.stdout.flush()
print()
sc.close()
print(‘ Socket closed’)

def client(host, port, bytecount):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
bytecount = (bytecount + 15) // 16 * 16 # round up to a
multiple of 16
message = b’capitalize this!’ # 16-byte message to repeat
over and over
print(‘Sending’, bytecount, ‘bytes of data, in chunks of 16
bytes’)
sock.connect((host, port))

sent = 0

while sent < bytecount:
sock.sendall(message)
sent += len(message)
print(‘\r %d bytes sent’ % (sent,), end=’ ‘)
sys.stdout.flush()
print()
sock.shutdown(socket.SHUT_WR)
print(‘Receiving all the data the server sends back’)
received = 0
while True:
data = sock.recv(42)
if not received:
print(‘ The first data received says’, repr(data))
if not data:
break
received += len(data)
print(‘\r %d bytes received’ % (received,), end=’ ‘)
print()
sock.close()

if __name__ == ‘__main__’:
choices = {‘client’: client, ‘server’: server}
parser = argparse.ArgumentParser(description=’Get deadlocked
over TCP’)
parser.add_argument(‘role’, choices=choices, help=’which role
to play’)
parser.add_argument(‘host’, help=’interface the server
listens at;’
‘ host the client sends to’)
parser.add_argument(‘bytecount’, type=int, nargs=’?’,
default=16,
help=’number of bytes for client to send (default 16)’)
parser.add_argument(‘-p’, metavar=’PORT’, type=int,
default=1060,
help=’TCP port (default 1060)’)
args = parser.parse_args()
function = choices[args.role]
function(args.host, args.p, args.bytecount)

Because it’s just trying to use the upper() string method on plain ASCII
characters, it can easily break the job off without needing to do any framing
or analysis. This is a procedure that can be carried out separately on each
computer. block of input, without regard for the blocks that preceded or
followed it. Things would not be so straightforward if it weren’t for the fact
that If it were trying to do a more advanced string operation like title(),
which capitalises a letter in the string, the server would crash. If a word is
split over a block border without being correctly reconstructed, it will
appear in the midst of the word. For If a data stream was split into 16-byte
blocks, for example, mistakes would appear as follows:
>>> message = ‘the tragedy of macbeth’
>>> blocks = message[:16], message[16:]
>>> ‘’.join(b.upper() for b in blocks) # works fine
‘THE TRAGEDY OF MACBETH’
>>> ‘’.join(b.title() for b in blocks) # whoops
‘The Tragedy Of MAcbeth’

For UTF-8 encoded Unicode data, processing text while splitting on fixed-
length blocks would not work since a multibyte character could be divided
across a boundary between two binary blocks. In such instances, the server
would have to be more cautious than in this example and maintain some
state between data blocks.
In any event, handling input one block at a time is a good idea for the
server, even if the 1,024-byte block size employed here is actually fairly
small for today’s servers and networks. By breaking down the data and
sending out responses as soon as possible, The server has a limit on how
much data it can maintain in memory at any given time. This type of server
could handle hundreds of clients at once, each transmitting gigabyte-sized
streams, without putting a strain on memory or other hardware resources.
The client and server in Listing 3-2 also appear to perform well for tiny data
streams. If you start the server and then execute the client with a command-
line option providing a small amount of bytes—say, 32 bytes of data—it
will receive all of its text in uppercase. It will round whatever value you
pass up to a multiple of 16 bytes for simplicity.
$ python tcp_deadlock.py client 127.0.0.1 32
Sending 32 bytes of data, in chunks of 16 bytes
32 bytes sent

Receiving all the data the server sends back

The first data received says b’CAPITALIZE THIS!CAPITALIZE THIS!’
32 bytes received

The server will acknowledge that it did indeed process 32 bytes for its most
recent client. The server, by the way, must be operating on the same system
as the client, and this script uses the localhost IP address to keep things
easy.
Processing up to 1024 bytes at a time from (‘127.0.0.1’,
60461)
32 bytes processed so far
Socket closed

When tried with tiny quantities of data, this code looks to perform nicely. In
fact, it may work for greater quantities as well. Attempt to run the client
with hundreds of thousands of bytes and check if it still works.
By the way, this first data exchange demonstrates the behaviour of recv(),
which I previously mentioned. Recv(1024) was glad to deliver only 16
bytes if that was the amount of data that became available and no more data
had yet arrived from the client, even if the server had requested 1,024 bytes.
This client and server, on the other hand, can be pushed into dangerous
terrain. If you try a large enough value, you’ll end up with a disaster! Try
sending a large stream of data using the client, say one that is a gigabit in
size.
$ python tcp_deadlock.py client 127.0.0.1 1073741824

Both the client and the server will be frantically updating their terminal
displays, informing you of the quantity of data they have transmitted and
received. The numbers will continue to rise until, all of a sudden, both
connections will freeze. Actually, if you pay attention, you’ll see that the
server comes to a halt first, followed by the client. On the Ubuntu laptop in
which I’m writing this chapter, the amount of data processed before they
seize up varies, but on the test run that I just finished on my laptop, the
Python script processed a lot of data. The server came to a halt, saying:
$ python tcp_deadlock.py server “”
Listening at (‘0.0.0.0’, 1060)
Processing up to 1024 bytes at a time from (‘127.0.0.1’,
60482)

4452624 bytes processed so far

In addition, the client is around 350,000 bytes ahead of schedule in sending
its outgoing data stream.
$ python tcp_deadlock.py client “” 16000000
Sending 16000000 bytes of data, in chunks of 16 bytes
8020912 bytes sent

Why have both the client and the server come to a halt?
The answer is that both the server’s output and client’s input buffers have
finally filled, and TCP has utilised its window adjustment protocol to
communicate this and prevent the connection from sending any more data
that would have to be deleted and resent later.
Why is there a stalemate as a result of this? Consider what happens as each
data block makes its way across the network. It is sent by the client using
sendall (). The server then takes it using recv(), processes it, and sends it out
again with a capitalised version via another sendall() call. What happens
after that? Nothing, to be precise! The client never calls recv() while it still
has data to communicate, so more and more data accumulates until the
operating system buffers can no longer handle it.
During the last run, the operating system buffered around 4MB in the
client’s incoming queue before the network stack decided it was full. At that
moment, the server’s sendall() call becomes stuck, and the operating system
pauses the server’s operation until the logjam is cleared and it can send
additional data. Now that the server isn’t processing data or making any
more recv() requests, it’s up to the client to start backing up data. Because
the client went nearly that far into creating data before being pulled to a
standstill, the operating system appears to have set a limit of around 3.5MB
on the amount of data it is willing to queue up in that direction.
You’ll probably find that different limits are reached on your own system;
the values above are arbitrary and based on the mood of my laptop at the
time. They have nothing to do with the way TCP operates.
This example is intended to teach you two things, in addition to
demonstrating that recv(1024) does indeed return less bytes than 1,024
when a smaller amount is readily available! These buffers can temporarily
store data so that packets don’t have to be discarded and resent if they come
at a time when their reader isn’t in the middle of a recv() call. However, the

buffers are not infinite. A TCP routine attempting to write data that is never
received or processed will eventually find itself unable to write, at least
until some of the data is read and the buffer begins to empty.
Second, this illustration highlights the hazards of protocols that do not
alternate lock step, with the client requesting a finite amount of data and
then waiting for the server to respond or acknowledge. . If a protocol does
not require the server to read a complete request until the client has finished
sending it, and then send a complete response in the other direction, a
situation like the one described here can cause both of them to freeze,
leaving them with no choice but to kill the programme manually and
rewrite it to improve its design.
But, if that’s the case, how are network clients and servers intended to
handle massive amounts of data without hitting a snag? In fact, there are
two possible responses. To begin, they can utilise socket options to disable
blocking, allowing functions like send() and recv() to return immediately if
they are unable to deliver data. In Chapter 7, you’ll learn more about this
choice when you examine the many approaches to construct network server
programmes in depth.
Alternatively, the programmes can process data from multiple inputs
simultaneously by splitting into separate threads or processes (one tasked
with sending data into a socket, for example, and another tasked with
reading data back out), or by using operating system calls like select() or
poll(), which allow them to wait on both busy outgoing and incoming
sockets at the same time and respond to whichever is ready. Chapter 7
delves into these topics as well.
Finally, keep in mind that the preceding scenario is impossible to achieve
when utilising UDP. This is due to the fact that UDP does not support flow
control. If there are more datagrams coming than can be handled, UDP can
simply discard some of them, leaving it up to the application to figure out
what happened.

Half-Open Connections, Closed Connections
From the preceding example, there are two more arguments that need be
stated on a separate subject.

To begin, Listing 3-2 demonstrates how a Python socket object responds to
an end-of-file condition. When a socket is closed, it simply produces an
empty string, just like when a Python file object gives an empty string when
there is no more data to read.
In Listing 3-1, I never had to worry about this since I had placed a strong
enough structure on the protocol—exchanging a pair of 16-byte messages—
that I didn’t need to close the connection to signal when communication
was complete. The client and server could transmit a message while leaving
the socket open and closing it later without worrying about anyone waiting
for them to do so.
In Listing 3-2, however, the client sends—and the server processes and
returns—an arbitrary amount of data, the length of which is determined
solely by the number the user provides on the command line. As a result,
the identical pattern can be seen twice in the code: a while loop that
continues until it sees an empty string returned from recv (). Note that until
you get to Chapter 7 and start looking at nonblocking sockets, recv() may
throw an exception simply because no data is accessible right now. Other
methods are employed to determine whether the socket has closed in this
scenario.
Second, you’ll see that after sending its transmission, the client calls
shutdown() on the socket. This solves a significant issue. How will the
client avoid having to conduct a full close() on the socket and so restrict
itself from running the multiple recv() calls that it still needs to make to
obtain the server’s response if the server will read until it sees end-of-file?
The solution is to “half-close” the connection, i.e., disable communication
in one direction permanently without deleting the socket.
In a two-way socket, the shutdown() call can be used to halt communication
in either direction, as demonstrated in Listing 3-2. One of three symbols can
be used as its argument.

SHUT WR: This is the most typical value, because most programmes
know when their own output is complete, but not always when their
conversation partner is. This value indicates that the caller will not be
sending any more data into the socket, and that reads from the socket’s
opposite end should react with an end-of-file message.

SHUT RD: This command is used to switch off the incoming socket
stream, resulting in an end-of-file error if your peer tries to send you
any further data through the socket.
SHUT RDWR: This blocks communication on the socket in both
directions. It may not appear beneficial at first because you can just
close the socket with close(), and communication is terminated in both
directions. The distinction between closing and shutting down a socket
in both directions is somewhat complex. If your operating system
allows many programmes to share a single socket, close() just
terminates your process’s relationship with the socket while keeping it
open as long as another process is still utilising it. The shutdown()
method, on the other hand, will always disable the socket for everyone
who is currently using it.

Because you can’t build unidirectional sockets using the regular socket()
method, many programmers who only need to send data in one direction via
a socket will construct it first and then execute shutdown() for the direction
they don’t need as soon as it’s attached. This means that no operating
system buffers will be filled unnecessarily if the peer with whom they are
speaking sends data in an incorrect direction.
When you use shutdown() on sockets that should be unidirectional, you get
a more apparent error message for a peer that gets confused and tries to
communicate data. Otherwise, the unexpected data will either be ignored or
will fill a buffer, resulting in a deadlock because it will never be read.

TCP Streams as Files
TCP allows data streams, which may have reminded you of traditional files,
which also support reading and writing sequential data as basic operations.
Python does an excellent job of separating these ideas.While file objects
can read and write, sockets can only send and receive data (). And no thing
has the ability to do both.(This is a much cleaner and more portable
conceptual separation than the underlying POSIX interface, which allows a
C programmer to call read() and write() on a socket indiscriminately as if it
were a normal file descriptor.)
However, there are occasions when you’ll want to treat a socket like a
standard Python file object, such as when you want to send it to code that

can read and write data directly from a file, such as pickle, json, and zlib.
Python provides a makefile() method on every socket for this purpose,
which returns a Python file object that calls recv() and send() behind the
scenes.
>>> import socket
>>> sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
>>> hasattr(sock, ‘read’)
False
>>> f = sock.makefile()
>>> hasattr(f, ‘read’)
True

Sockets on Unix-based systems like Ubuntu and Mac OS X, like standard
Python files, offer a fileno() method that helps you find out what file
descriptor number they have in case you need to pass it to lower-level calls.
This will come in handy when you look at select() and poll() in Chapter 7.

Conclusion
The TCP-powered “stream” socket does everything it can to facilitate the
transmission and receipt of data streams over the network between two
sockets, including retransmitting lost packets, reordering out-of-sequence
packets, and breaking massive data streams into network-optimized packet
sizes.
TCP, like UDP, uses port numbers to differentiate between multiple stream
endpoints on a single system. A programme that wants to accept incoming
TCP connections must bind() to a port, listen() on the socket, and then run
accept() in a loop to receive a new socket for each incoming connection
with which it can communicate with each individual client. To connect to
an existing server port, all a programme needs to do is build a socket and
connect() to an address.
Servers should commonly set the SO REUSEADDR option on the sockets
they bind(), lest the operating system refuse to allow the binding due to old
connections still closing on the same port from the last time the server was
run.
With send() and recv(), data is really sent and received (). Some protocols
that run on top of TCP will label their data in such a way that clients and

servers will know when a communication is concluded automatically. Other
protocols will interpret the TCP socket as a genuine stream, sending and
receiving data until the file ends. The shutdown() socket method can be
used to produce end-of-file in one direction (all sockets are bidirectional by
default) while leaving the other open.
When two peers exchange data, the socket fills up with data that is never
read, resulting in a deadlock. . One direction may eventually be unable to
send() and may hang indefinitely while waiting for the backlog to clear.
If you wish to pass a socket to a Python procedure that knows how to read
from or write to a regular file object, the makefile() socket method returns a
Python object that executes recv() and send() behind the scenes when the
caller wants to read or write.

CHAPTER 4
Domain name system & socket names

After understanding the fundamentals of UDP and TCP, the two major data
transports accessible on IP networks, it’s time for me to take a step back and
discuss two larger challenges that must be addressed regardless of whatever
data transport you use.

Structure
Sockets and Hostnames
Five Socket Coordinates
IPv6
Modern Address Resolution
Bind Your Server to a Port Using getaddrinfo()
To connect to a service, use getaddrinfo()
Getting a Canonical Hostname with getaddrinfo()
Other getaddrinfo() Flags
Primitive Name Service Routines
In Your Own Code, Use getsockaddr()
DNS Protocol
Why Shouldn’t Use Raw DNS?
Using Python to do a DNS query
Getting Mail Domains Resolved
Conclusion

Objective:
In this chapter, we’ll talk about network addresses and the distributed
service that converts names to raw IP addresses.

Sockets and Hostnames
Raw IP addresses are rarely typed into our browsers or e-mail clients. We
type domain names instead. Some domain names, such as python.org and
bbc.co.uk, are used to identify entire organisations. Some websites allow
you to abbreviate a hostname by typing asaph, and they will fill in the rest
of the name for you, presuming you mean the asaph machine on the same
site. Regardless of any local customisation, specifying a fully qualified
domain name that includes all elements up to and including the top-level
domain is always proper.
A top-level domain (TLD) used to be as easy as.com,.net,.org,.gov,.mil, or a
two-letter internationally recognised country code like.uk. However, many
more, more frivolous top-level domains, such as.beer, are being introduced
today, making it a little more difficult to tell the difference between fully
qualified and partially qualified domain names at a glance (unless you try to
memorise the entire list of top-level names!).
Each TLD often has its own set of servers, which are managed by an
organisation in charge of awarding ownership to domains under the TLD.
When you register a domain, they create an entry on their servers for it.
When a client from anywhere in the world tries to resolve a name within
your domain, the top-level servers can direct the client to your own domain
servers, which will allow your company to return the addresses it need for
the various hostnames you generate. The Domain Name Service is a
network of servers located all over the world that respond to name queries
using this system of top-level names and referrals (DNS).
Sockets cannot be named with a single primitive Python value such as an
integer or string, as you learned in the previous two chapters. Instead, both
TCP and UDP employ integer port numbers to share a single machine’s IP
address among the many distinct applications that may be operating there,
therefore the address and port number must be combined to create a socket
name, such as this:
(115.114.148.6)

While you may have picked up a few tidbits about socket names from the
previous chapters—for example, the knowledge that the first item can be
either a hostname or a dotted IP address—time it’s to go deeper into the
issue.

Socket names are significant at various stages during the creation and use of
sockets, as you will recall. Here are all of the key socket methods that
require a socket name as an argument for your convenience:

mysocket.accept(): This function returns a tuple whose second item is
the remote address that has connected (the first item in the tuple is the
new socket connected to that remote address) each time it is called on
a listening TCP stream socket that has incoming connections ready to
hand off to the application.
mysocket.bind(address): This binds the socket to the supplied local
address, giving outgoing packets an address from which to originate
and incoming connections from other computers a name to which they
can connect.
mysocket.connect(address): This tells the socket that data supplied
through it will be transmitted to the specified remote address. This just
sets the default address for UDP sockets if the caller uses send()
instead of sendto() or recv() instead of recvfrom() but does not execute
any network communication right away. For TCP sockets, however,
this really uses a three-way handshake to negotiate a new stream with
another computer, raising a Python exception if the negotiation fails.
mysocket.getpeername(): This function returns the remote address of
the socket.
getsockname() returns the address of this socket’s own local endpoint.
mysocket.recvfrom(...): This method produces a tuple that contains a
string of returned data and the address from which it was received for
UDP sockets.
mysocket.sendto(data, address): This function is used to send a data
packet to a remote address from an unconnected UDP port.

That concludes the discussion. So that you have some context for the
observations that follow, here are the important socket actions that care
about socket addresses, all in one location. In general, any of the
aforementioned methods can receive or return any of the addresses listed
below, so they’ll work whether you’re using IPv4, IPv6, or one of the less
popular address families that I won’t be addressing in this book.

Five Socket Coordinates
You paid close attention to the hostnames and IP addresses that their
sockets utilised when studying the sample programmes in Chapters 2 and 3.
However, these are merely the final two coordinates of five critical
decisions made during the design and deployment of each socket object.
Remember that the steps are as follows:
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
s.bind((‘localhost’, 1060))

You can see that you specify four values here: two for socket configuration
and two for the bind() call address.Because socket() takes a third, optional
argument, there is a fifth potential coordinate. I’ll go over each one one by
one, starting with the three possible socket parameters ().
First, the address family makes the most important decision: it specifies
which type of network you wish to communicate with, out of the many that
a given machine may be linked to.
Because I feel that writing about IP networking will best assist the vast
majority of Python programmers while also offering you skills that will
work on Linux, Mac OS, or even Windows, I will always use the value AF
INET for the address family in this book. However, if you import the socket
module, print dir(socket), and search for symbols that begin with AF_
(“Address Family”), you’ll find more options with names you’re familiar
with, such as AppleTalk and Bluetooth. The AF UNIX address family is
very prevalent on POSIX platforms. which provides connections similar to
Internet sockets, but which run between applications on the same machine
by “connecting” to filenames rather than hostnames and port numbers.
The socket type comes after the address family. It selects the type of
communication strategy you want to utilise on the network you’ve selected.
You may anticipate that each address family has its own set of socket types,
which you’d have to check up for each one. After all, what other address
family besides AF INET will support socket types such as UDP and TCP?
Fortunately, this suspicion is unfounded. Despite the fact that UDP and TCP
are very specialised to the AF INET protocol family, , the socket interface
designers chose to give the general concept of a packet-based socket a more
generic moniker. This is known as SOCK DGRAM, and it refers to the

general concept of a dependable flow-controlled data stream, also known as
a SOCK STREAM. Because many address families support one or both of
these techniques, only these two symbols are required to cover a wide range
of protocols across several address families.
Because you have usually narrowed down the various protocols to only one
major option after specifying the address family and socket type, the
protocol field in the socket() method is rarely used. Typically, programmers
leave this blank or offer the value 0 to force it to be chosen automatically. If
you want a stream over IP, the system will automatically select TCP. It
chooses UDP if you want datagrams. That’s why there’s no third argument
in any of the socket() methods in this book: it’s nearly never needed in
practise. Some examples of protocols defined for the AF INET family can
be found in the socket module under names beginning with IPPROTO.
Under the titles IPPROTO TCP and IPPROTO UDP, you’ll find the two
protocols that this book focuses on.
Finally, the IP address and port number, which were discussed in the
previous two chapters, are the fourth and fifth values used to establish a
connection.
We need take a step back and realise that our socket names include two
components: hostname and port, due to our precise choices for the first
three coordinates. If you had picked AppleTalk, ATM, or Bluetooth as your
address family instead, you might have needed a different data structure
than a tuple with a string and an integer inside. So, the entire set of
coordinates, which I’ve referred to as five throughout this section, is really
just the three fixed coordinates required to create the socket, followed by
however many extra coordinates your specific address family requires in
order to establish a network connection.

IPv6
After explaining all of this, it turns out that this book will need to present
one more address family beyond the AF INET used so far: the AF INET6
address family for IPv6, which is the path to a future in which the world
will not run out of IP addresses.
When the old ARPANET truly took off, its 32-bit address names—which
made perfect sense back when computer memory was measured in

kilobytes—became a clear and concerning constraint. With only 4 billion
potential addresses, there isn’t enough IP addresses for everyone on the
planet, which spells disaster once everyone has a computer and a
smartphone!
Even though only a small percentage of computers on the Internet today use
IPv6 to communicate with the global network through their Internet service
providers (where “today” is June 2014), the steps to make your Python
programmes IPv6 compatible are straightforward enough that you should
try writing code that anticipates the future.
In Python, you can check the has ipv6 Boolean attribute inside the socket
module to see if the underlying platform supports IPv6.
>>> import socket
>>> socket.has_ipv6
True

that this does not indicate if an IPv6 interface is currently operational
and capable of sending packets anywhere! It’s only a statement about
whether IPv6 capability is included into the operating system, not
about whether it’s in use.
When enumerated one after the other, the alterations that IPv6 will
bring for your Python code may appear to be pretty scary.

If you’re working on an IPv6 network, you’ll need to make your
sockets using the AF INET6 family.
Socket names are no longer limited to just two components: an
address and a port number. Additional coordinates that offer
“flow” information and a “scope” identification can be used
instead.
IPv6 host addresses will sometimes replace the pretty IPv4 octets
like 18.9.22.69 that you might already be reading from
configuration files or command-line inputs, and you might not
even have decent regular expressions for these just yet.

The benefits of the IPv6 transition include not only the availability of an
enormous number of addresses, but also the protocol’s more comprehensive
support for things like link-level security than most IPv4 implementations.

However, if you’re used to creating clumsy, old-fashioned code that scans
or assembles IP addresses and hostnames using your own regular
expressions, the adjustments just outlined may seem like a lot of work. . In
other words, if you’ve ever done your own address interpretation, you’re
probably anticipating that the transition to IPv6 will require you to write
even more complicated code than before. Don’t worry: my true advice is to
avoid address interpretation and scanning at all costs! The following section
will demonstrate how to do so.

Modern Address Resolution
Getaddrinfo is one of the most powerful tools in the Python socket user’s
armoury for making your code simple, powerful, and resilient to the
complications of the shift from IPv4 to IPv6 ().
The getaddrinfo() function, like most other actions involving addresses,
is found in the socket module.
It’s probably the only routine you’ll ever need to use to convert the
hostnames and port numbers that your users supply into addresses that
socket methods can use, unless you’re doing anything specialised.
It takes a straightforward approach. Rather than forcing you to approach the
addressing problem piecemeal, as is required when utilising the socket
module’s older functions, It allows you to specify whatever you need to
know about the connection in a single request. It responds by returning all
of the coordinates I mentioned earlier, which you’ll need to construct and
connect a socket to the specified location.
Its fundamental functionality is as follows (notice that the pprint “pretty
print” module has nothing to do with networking; it just improves the
appearance of a list of tuples over the standard print function):
>>> from pprint import pprint
>>> infolist = socket.getaddrinfo(‘google.com’, ‘www’)
>>> pprint(infolist)
[(2, 1, 6, ‘’, (‘142.250.67.174’, 80))]
>>> info = infolist[0]
>>> info[0:3]
(2, 1, 6)
>>> s = socket.socket(*info[0:3])

>>> info[4]
(‘142.250.67.174’, 80)
>>> s.connect(info[4])

Everything you need to construct a socket and use it to make a connection
is in the info variable.
It gives you a family, a type, a protocol, a canonical name, and an address.
What are the parameters for getaddrinfo()? The two-element list that was
returned tells you that there are two ways to connect to the HTTP service of
the host gatech.edu: either by creating a SOCK STREAM socket (socket
type 1) that uses IPPROTO TCP (protocol number 6) or by using a SOCK
DGRAM (socket type 2) socket with IPPROTO UDP (protocol number 2).
(which is the protocol represented by the integer 17). Instead of leaving the
response to chance, you will usually indicate which sort of socket you want
when calling getaddrinfo() later from scripts.
If you use getaddrinfo() in your code, unlike the listings in Chapters 2 and
3, which used real symbols like AF INET to show how the low-level socket
mechanisms worked, your production Python code will not use any symbols
from the socket module except those that tell getaddrinfo() what kind of
address you want. . Instead, use the first three things in the getaddrinfo()
return value as parameters to the socket() function Object() { [native code]
}, and the fifth item as the address to any of the address-aware functions
described in the first section of this chapter, such as connect().
As you can see from the above code snippet, getaddrinfo() permits not just
the hostname but also the port name to be a symbol rather than an integer,
removing the need for older Python scripts to make extra calls if the user
wants to use www or smtp instead of 80 or 25.
Before going over all of the options that getaddrinfo() has, it’s a good idea
to look at how it’s used to support three common network tasks. I’ll go over
them in the order in which you might do socket operations: binding,
connecting, and finally recognising a remote host who has sent you data.

Bind Your Server to a Port Using getaddrinfo()
If you wish to submit an address to bind(), either because you’re
constructing a server socket or because you want your client to connect to
someone else but from a predictable address, use getaddrinfo() with None

as the hostname but the port number and socket type filled in. Note that in
this and subsequent getaddrinfo() calls, zeros are used as wildcards in fields
that should include numbers:
>>> from socket import getaddrinfo
>>> getaddrinfo(None, ‘smtp’, 0, socket.SOCK_STREAM, 0,
socket.AI_PASSIVE)
[(2, 1, 6, ‘’, (‘0.0.0.0’, 25)), (10, 1, 6, ‘’, (‘::’, 25, 0,
0))]
>>> getaddrinfo(None, 53, 0, socket.SOCK_DGRAM, 0,
socket.AI_PASSIVE)
[(2, 2, 6, ‘’, (‘0.0.0.0’, 53)), (10, 2, 17, ‘’, (‘::’, 53, 0,
0))]

I asked two distinct questions, one with a text port identifier and the other
with a raw numeric port number. First, I wanted to know to which IP I
should bind() a socket if I wanted to use TCP to serve SMTP traffic.
Second, I inquired about using UDP to serve port 53 (DNS) traffic. The
responses I received are the appropriate wildcard addresses that will allow
you to bind to every IPv4 and IPv6 interface on the local machine using the
correct socket family, socket type, and protocol settings in each case.
Instead, skip the AI PASSIVE parameter and merely enter the hostname if
you wish to bind() to a specific IP address that you know is configured as a
local address for the computer on which you are executing. Here are two
examples of how you might try binding to localhost:
>>> getaddrinfo(‘127.0.0.1’, ‘smtp’, 0, socket.SOCK_STREAM, 0)
[(2, 1, 6, ‘’, (‘127.0.0.1’, 25))]
>>> getaddrinfo(‘localhost’, ‘smtp’, 0, socket.SOCK_STREAM, 0)
[(10, 1, 6, ‘’, (‘::1’, 25, 0, 0)), (2, 1, 6, ‘’,
(‘127.0.0.1’, 25))]

As you can see, providing the IPv4 address for the local host restricts you to
receiving connections over IPv4, whereas using the symbolic name
localhost (at least on my Linux laptop with a properly set /etc/hosts file)
makes the machine available via both IPv4 and IPv6.
By the way, one thing you might be asking at this point is what you’re
supposed to do when you declare that you want to provide a simple service
and getaddrinfo() offers you numerous addresses to use—you can’t build a
single socket and bind() it to multiple addresses! In Chapter 7, I’ll go

through some of the approaches you can use if you’re creating server code
and wish to run multiple bound server sockets at the same time.

To connect to a service, use getaddrinfo().
You’ll use getaddrinfo() to learn about connecting to other services, unless
you’re binding to a local address to provide a service yourself. When
looking up services, you can specify an empty string to link back to the
local host through the loopback interface or a string containing an IPv4
address, IPv6 address, or a hostname to name your destination.
Call getaddrinfo() with the AI ADDRCONFIG flag when preparing to
connect() or sendto() a service. This filters out any addresses that your
computer cannot reach. For example, an organization’s IP address range
could include both IPv4 and IPv6 addresses. If your host only supports
IPv4, you’ll want the results filtered to only include addresses from that
family. You’ll also want to provide AI V4MAPPED to return the IPv4
addresses reencoded as IPv6 addresses that you can really use if your local
machine only has an IPv6 network interface but the service to which you’re
connecting only supports IPv4.
When putting these components together, you’ll most likely use
getaddrinfo() before joining them.
>>> getaddrinfo(‘google.com’, ‘www’, 0, socket.SOCK_STREAM, 0,
... socket.AI_ADDRCONFIG | socket.AI_V4MAPPED)
[(2, 1, 6, ‘’, (‘142.250.67.174’, 80)),
(2, 1, 6, ‘’, (‘142.250.67.174’, 80))]

You’ve gotten exactly what you requested in return: a list of every
technique to connect to ftp.kernel.org via a TCP connection to its FTP port.
Because this service is located at numerous distinct addresses on the
Internet to share load, several IP addresses were returned. When numerous
addresses are returned in this manner, you should normally use the first one
and only try the others if your connection attempt fails. You will provide the
workload that the remote service managers intend if you follow the order in
which they want you to try connecting their servers.
Another question concerns how I can connect from my laptop to the
IANA’s HTTP interface, which is responsible for assigning port numbers in
the first place.

>>> getaddrinfo(‘google.com’, ‘www’, 0, socket.SOCK_STREAM, 0,
... socket.AI_ADDRCONFIG | socket.AI_V4MAPPED)
[(2, 1, 6, ‘’, (‘142.250.67.174’, 80))]

The IANA web site is an excellent example of the AI ADDRCONFIG
flag’s utility because, like any other decent Internet standards agency, it
already supports IPv6. Because my laptop can only communicate with IPv4
on the wireless network to which it is now connected, the previous call was
careful to only return an IPv4 address. If you remove the carefully specified
flags in the sixth parameter, however, you can see their IPv6 address, which
you are unable to utilize.
>>> getaddrinfo(‘google.com’, ‘www’, 0, socket.SOCK_STREAM, 0)
[(2, 1, 6, ‘’, (‘142.250.67.174’, 80)),
(10, 1, 6, ‘’, (‘2001:4860:4860::8844’, 80, 0, 0))]

This can be handy if you aren’t planning on using the addresses yourself but
are supplying directory information to other hosts or apps.

Getting a Canonical Hostname with getaddrinfo()
Last but not least, you may need to know the hostname that formally
belongs to the IP address at the other end of your server socket if you are
initiating a new connection or have just accepted an incoming connection
on one of your own server sockets.
Although this wish is sensible, it comes with a serious risk: the owner of an
IP address can have their DNS server return any name they want as the
canonical name when your computer performs a reverse query! They can
pretend to be google.com, python.org, or anyone else. When you ask them
what hostname belongs to one of their IP addresses, they have complete
control over the string of characters returned to you.
Before trusting a canonical name lookup—also known as a reverse DNS
lookup because it maps an IP address to a hostname rather than the other
way around—you should check the name that has been returned to
determine if it really resolves to the original IP address. If not, the hostname
is either intentionally misleading, or it was a well-intentioned response from
a domain whose forward and reverse names, as well as IP addresses, were
not appropriately configured to match.

Lookups for canonical names are expensive. Because they require an extra
round-trip over the global DNS service, they are frequently omitted for
logging. Services that pause to reverse-lookup every single IP address that
makes a connection are slow and ponderous, therefore logging bare IP
addresses is a common step by system administrators aiming to improve a
system’s response time. If one of them is causing a problem, you can
always hunt it up in the log file later by hand.
However, if you need the canonical name of a host and wish to look it up,
run getaddrinfo() with the AI CANONNAME flag enabled, and the fourth
item of any of the tuples it returns—an item that was the empty string in the
previous examples—will have the canonical name:
>>> getaddrinfo(‘google.com’, ‘www’, 0, socket.SOCK_STREAM, 0,
... socket.AI_ADDRCONFIG | socket.AI_V4MAPPED |
socket.AI_CANONNAME)
[(2, 1, 6, ‘google.com’, (‘142.250.67.174’, 80))]

Getaddrinfo() can also take the name of a socket that is already connected
to a remote peer and return a canonical name.
>>> mysock = server_sock.accept()
>>> addr, port = mysock.getpeername()
>>> getaddrinfo(addr, port, mysock.family, mysock.type,
mysock.proto,
... socket.AI_CANONNAME)
[(2, 1, 6, ‘rr.pmtpa.wikimedia.org’, (‘103.102.166.226’, 80))]

Once again, this will only work if the IP address’s owner has a name
assigned to it. Because many IP addresses on the Internet lack a suitable
reverse name, you have no means of identifying who has contacted you
unless you employ encryption to confirm the peer with whom you are
interacting.

Other getaddrinfo() Flags
Three of the most essential getaddrinfo() flags are demonstrated in the
preceding examples. The flags that are accessible differ by operating
system, so if you’re unsure about a value that your machine returns, you
should always examine its documentation (not to mention its
configuration). However, there are a few flags that are cross-platform. Here
are a few of the most significant:

AI EVERYTHING: The AI V4MAPPED option protects you from
situations when you are on a purely IPv6-connected host but the host
to which you want to connect advertises only IPv4 addresses, as I’ve
already said. It overcomes this issue by converting IPv4 addresses to
IPv6 equivalents. If any IPv6 addresses are accessible, these will be
the only ones displayed, and none of the IPv4 addresses will be
included in the return value. This is fixed by this option: if you wish to
see all of the addresses from your IPv6-connected host, even if some
perfectly fine IPv6 addresses are accessible, use the AI ALL flag in
conjunction with AI V4MAPPED, and the list provided to you will
include every address known for the target host.
AI NUMERICHOST: This disables any effort to understand the
hostname parameter—getaddrinfo(first)’s parameter—as a textual
hostname like cern.ch, instead attempting to read the hostname string
as a literal IPv4 or IPv6 hostname like 74.207.234.78 or
fe80::fcfd:4aff:fecf:ea4e. This is much faster because the user or
config file providing the address cannot force your programme to
make a DNS round-trip to look up the name (see the next section), and
it prevents potentially untrustworthy user input from forcing your
system to issue a query to a name server controlled by someone else.
AI NUMERICSERV: This disables symbolic port names such as
‘www’ and forces the use of port numbers such as 80 instead. Because
port number databases are often maintained locally on IP-capable
devices rather than requiring a distant query, you don’t need to utilise
this to protect your programmes from delayed DNS lookups. On
POSIX systems, resolving a symbolic port name usually only involves
a short scan of the /etc/services file (but double-check the services
option in your /etc/nsswitch.conf file to be sure). Activating this flag,
on the other hand, can be a handy sanity check if you know your port
string should always be an integer.

Finally, you don’t need to bother about the IDN-related flags that some
operating systems provide, which instruct getaddrinfo() to resolve those
fancy new domain names with Unicode letters.Instead, Python will identify
whether a string requires special encoding and will apply the appropriate
settings to convert it for you:

>>> getaddrinfo(‘ उदाहरण.परी�ा ‘, ‘www’, 0,
socket.SOCK_STREAM, 0,
... socket.AI_ADDRCONFIG | socket.AI_V4MAPPED)
[(2, 1, 6, ‘’, (‘199.7.85.13’, 80))]

If you’re interested in learning more about how this works behind the
scenes, start with RFC 3492 and note that Python now contains a ‘idna’
codec that can translate to and from internationalised domain names.
>>> ‘ उदाहरण.परी�ा ‘.encode(‘idna’)
B’xn--11b5bs3a9aj6g ‘
When you input the hindi sample domain name shown in the previous
example, it is this plain-ASCII string that is transmitted to the domain name
service. Python will once again disguise this complexity for you.

Primitive Name Service Routines
Before getaddrinfo() became popular, socket-level programmers had to
make do with a simpler set of name service methods provided by the
operating system. Because most of them are built to only speak IPv4, they
should be avoided today.
Their documentation may be found on the socket module’s Standard
Library page. To demonstrate each call, I’ll give a few simple examples.
The current machine’s hostname is returned by two calls.
>>> socket.gethostname()
‘bpbonline’
>>> socket.getfqdn()

‘bpbonline’

Two more allow you to convert IPv4 hostnames to IP addresses.
>>> socket.gethostbyname(‘bpbonline.com’)
‘23.227.38.65’
>>> socket.gethostbyaddr(‘23.227.38.65’)
(‘myshopify.com’, [], [‘23.227.38.65’])

Finally, three methods allow you to look for protocol numbers and ports by
utilising symbolic names that your operating system understands.
>>> socket.getprotobyname(‘UDP’)
17

>>> socket.getservbyname(‘www’)
80
>>> socket.getservbyport(80)
‘www’

You can try putting the fully qualified hostname of the system on which
your Python programme is executing into a gethostbyname() call like this to
obtain the primary IP address for the machine on which your Python
programme is running.

In Your Own Code, Use getsockaddr()
To tie everything together, I’ve put up a small example of getaddrinfo() in
action. Take a look at Table 4-1.
Listing 4-1. Using getaddrinfo() to Create and Connect a
Socket
#!/usr/bin/env python3
Network Programming in Python: The Basics
Find the WWW service of an arbitrary host using
getaddrinfo().
import argparse, socket, sys
def connect_to(hostname_or_ip):

try:
infolist = socket.getaddrinfo(

hostname_or_ip, ‘www’, 0, socket.SOCK_STREAM, 0,
socket.AI_ADDRCONFIG | socket.AI_V4MAPPED |
socket.AI_CANONNAME,

)
except socket.gaierror as e:
print(‘Name service failure:’, e.args[1])
sys.exit(1)

info = infolist[0] # per standard recommendation, try the
first one
socket_args = info[0:3]
address = info[4]
s = socket.socket(*socket_args)
try:
s.connect(address)

except socket.error as e:
print(‘Network failure:’, e.args[1])

else:
print(‘Success: host’, info[3], ‘is listening on port 80’)

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Try connecting
to port 80’)
parser.add_argument(‘hostname’, help=’hostname that you want
to contact’)

connect_to(parser.parse_args().hostname)

This script attempts a rapid connection to port 80 with a streaming socket to
do a simple “Are you there?” test of whichever web server you specify on
the command line. The following is an example of how to use the script:
$ python www_ping.py bpbonline
Success: host bpbonline is listening on port 80
$ python www_ping.py smtp.google.com
Network failure: Connection timed out
$ python www_ping.py no-such-host.com
Name service failure: Name or service not known

Three points to note about the script:

It is entirely generic, with no mention of IP as a protocol or TCP as a
transport. If the user types a hostname that the system recognises as a
host to which it is connected through AppleTalk (if you can believe
that in this day and age), then getaddrinfo() is free to return the
AppleTalk socket family, type, and protocol, and that is the type of
socket that you would create and connect.
Getaddrinfo() failures result in a specific name service problem,
known as a gaierror in Python, rather than a standard socket error like
the one found at the end of the script.
You haven’t sent a list of three distinct items to the socket() function
Object() { [native code] }. Instead, an asterisk before the argument
list, indicating that the three components of the socket args list are
supplied to the function Object() { [native code] } as three
independent parameters. This is in contrast to what you must do with
the actual address returned, which is passed as a single unit to all
socket procedures that require it.

DNS Protocol
The Domain Name System (DNS) is a system in which millions of Internet
hosts collaborate to determine which hostnames correspond to which IP
addresses. The DNS is responsible for the fact that you can type python.org
into your web browser instead of needing to memorise 82.94.164.162 for
IPv4 users or 2001:888:2000:d::a2 for IPv6 users.
THE DNS PROTOCOL
Purpose: Resolve hostnames by returning IP addresses
Standard: RFC 1034 and RFC 1035 (from 1987)
Runs atop: UDP/IP and TCP/IP
Port number: 53
Libraries: Third-party, including dnspython3
The communications that computers send to complete this resolution pass
via a series of servers in a hierarchy. If your local computer and name
server are unable to resolve a hostname because it is not local to your
organisation or has not been seen recently enough to remain in the name
server’s cache, the next step is to query one of the world’s top-level name
servers to determine which machines are responsible for the domain in
question. The domain name can then be queried using the DNS server IP
addresses that have been returned.
Before delving into the intricacies, let’s take a step back and look at how
this surgery is often carried out.
Take, for example, the domain name www.python.org. If your web browser
requires this address, it makes a call to getaddrinfo(), which asks the
operating system to resolve the name. Your system will recognise whether it
is running its own name server or whether the network to which it is
connected provides name service. When your machine connects to the
network—whether it’s a LAN in a corporate office or an educational
institution, a wireless network, or a home cable or DSL connection—it
usually configures name server information automatically through DHCP.
In other circumstances, when a system administrator set up your
workstation, the DNS server IP addresses were manually setup. In either
case, the DNS servers must be supplied using their raw IP addresses, as you

http://www.python.org/

won’t be able to make any DNS queries unless you know how to get to
them.
When users are dissatisfied with their ISP’s DNS behaviour or performance,
they can configure a third-party DNS server of their choice, such as
Google’s servers at 8.8.8.8 and 8.8.4.4. In certain rare circumstances, the
local DNS domain name servers are identified by the computer’s use of
another set of names, such as the WINS Windows naming service.
However, in order for name resolution to be possible, a DNS server must be
identified in some way.
Some hostnames are known to your computer without the need to visit a
domain name service. When you make a request like getaddrinfo, the first
thing an operating system normally does is query DNS for a hostname (). In
fact, because DNS queries are time-consuming, they are frequently the last
option! Depending on the hosts item in your /etc/nsswitch.conf file if you’re
on a POSIX box, or the settings in your Windows Control Panel, the
operating system may look in one or more different locations before
resorting to DNS. On my Ubuntu laptop, for example, every hostname
query starts with a check of the /etc/hosts file. If possible, a specific
protocol known as multicast DNS is utilised. If that fails or is unavailable,
full-fledged DNS is used to respond to the hostname inquiry.
Consider the case when the name www.python.org isn’t defined locally on
the machine and hasn’t been searched recently enough to be in any local
cache on the machine where your web browser is running.
In that situation, the computer will hunt up the local DNS server and send it
a single UDP DNS request packet.
Now it’s up to an actual DNS server to answer the question. For the
remainder of this talk, I’ll refer to it as “your DNS server,” as in “the
specific DNS server that is performing hostname lookups for you.” Of
course, the server itself most likely belongs to someone else, such as your
work, ISP, or Google, and so is not yours in the sense that you own it.
Your DNS server’s initial action will be to check its cache of previously
requested domain names to see if www.python.org has already been
checked by another computer served by the DNS server in the previous few
minutes or hours. If an entry exists and has not yet expired (the owner of
each domain name has control over the expiration timeout since some

http://www.python.org/
http://www.python.org/

organisations prefer to change IP addresses rapidly if necessary), while
some are content to let old IP addresses remain in DNS caches around the
world for hours or days), it can be returned promptly. But say it’s morning,
and you’re the first person in your office or coffee shop to try talking to
www.python.org today; the DNS server will have to start from scratch to
identify the hostname.
Your DNS server will now query for www.python.org at the top of the
world’s DNS server hierarchy, the “root-level” name servers, which know
all of the top-level domains (TLDs) like.com,.org, and.net, as well as the
groups of servers responsible for each. The IP addresses of these top-level
servers are usually integrated into name server software to solve the
bootstrapping problem of how to identify any domain name servers before
connecting to the domain name system. Your DNS server will learn
(assuming it didn’t previously know from another recent query) which
servers store the full index of the.org domain with this first UDP round-trip.
A second DNS request will now be sent, this time to one of the.org servers,
inquiring about the python.org domain’s owner.
A second DNS request will now be sent, this time to one of the.org servers,
inquiring about the python.org domain’s owner. Run the whois command-
line programme on a POSIX system to see what those top-level servers
know about a domain, or use one of the many “whois” web pages online if
you don’t have the command installed locally.
$ whois python.org
Domain Name:PYTHON.ORG
Created On:27-Mar-1995 05:00:00 UTC
Last Updated On:07-Sep-2006 20:50:54 UTC
Expiration Date:28-Mar-2016 05:00:00 UTC
...
Registrant Name:Python Software Foundation
...
Name Server:NS2.XS4ALL.NL
Name Server:NS.XS4ALL.NL

And with that, we have our answer! Any DNS request for any hostname
within python.org must be sent to one of the two DNS servers listed in that
entry, regardless of where you are in the globe. Of course, when your DNS
server sends this request to a top-level domain name server, it does not

http://www.python.org/
http://www.python.org/

receive only the two names listed above. Instead, it gets provided their IP
addresses, allowing it to contact them immediately without having to go
through another round of costly DNS lookups.
Your DNS server can now connect directly with NS2.XS4ALL.NL or
NS.XS4ALL.NL to inquire about the python.org domain, as it has finished
talking to both the root-level DNS server and the top-level.org DNS server.
In reality, if the first one is unavailable, it will fall back to the second. This
enhances your odds of receiving a response, but it also increases the amount
of time you spend looking at your web browser waiting for the page to load.
Depending on how python.org’s name servers are configured, the DNS
server may only need one more query to return an answer, or it may need
several more queries if the organisation is large and has multiple
departments and subdepartments, each of which runs its own DNS server to
which requests must be delegated. In this situation, either of the two servers
previously mentioned can immediately respond to the www.python.org
query, and your DNS server can now send a UDP packet to your browser
notifying it which IP addresses correspond to that hostname.
This procedure necessitated four different network round-trips. Your
machine performed a request and received a response from your own DNS
server, and in order to respond, your DNS server had to perform a recursive
query that required three round-trips to other servers. It’s no surprise that
your browser spins when you type in a domain name for the first time.

Why Shouldn’t Use Raw DNS?
I hope that the preceding description of a typical DNS query has
demonstrated that your operating system does a lot for you when you need a
hostname searched up. As a result, unless you absolutely need to speak
DNS for a specific purpose, I propose that you always rely on getaddrinfo()
or another system-supported approach for resolving hostnames. Consider
the following advantages of allowing your operating system to perform
name searches for you:

The DNS isn’t always the only source of name information for a
system. Users will notice that some computer names that work
elsewhere on your system—in their browser, in file share paths, and so
on—suddenly stop working when they use your application since you

http://www.python.org/

are not consulting mechanisms like WINS or /etc/hosts as the
operating system does.
The local machine’s cache of previously queried domain names is
likely to contain the host whose IP address you require. You will be
duplicating work that has already been done if you try to answer your
question via DNS.
Thanks to manual setting by your system administrator or a network
setup mechanism like DHCP, the system on which your Python script
is running already knows about the local domain name servers. To use
DNS in your Python programme, you’ll need to learn how to query
your operating system for this information, which I won’t discuss in
this book because it’s a system-specific action.
If you don’t use the local DNS server, you won’t be able to take use of
its cache, which prevents your app and other apps on the same
network from making repeated requests for a hostname that is often
used at your location.
The world DNS infrastructure is updated from time to time, and
operating system libraries and daemons are gradually updated to
accommodate this. If your software makes its own DNS calls, you’ll
have to keep track of these changes and make sure your code is up to
date with the newest changes in TLD server IP addresses,
internationalisation conventions, and DNS protocol adjustments.

Finally, Python’s Standard Library does not include any DNS functionality.
If you want to use Python to talk about DNS, you’ll need to pick and learn a
third-party library.

Using Python to do a DNS query
There is, however, a good and valid reason to use Python to make a DNS
request. It’s because you’re a mail server, or at the very least a client trying
to send mail directly to your receivers without using a local mail relay, and
you need to seek up the MX records associated with a domain in order to
identify the correct mail server for your @example.com buddies.
As we near the end of this chapter, let’s have a look at one of the third-party
DNS libraries for Python. dnspython3, which you can install using the usual

Python packaging tool, appears to be the best one currently available for
Python 3.
$ pip install dnspython3

The library use its own methods to determine which domain name servers
your Windows or POSIX operating system is currently utilising, and then
requests that those servers perform recursive inquiries on its behalf. As a
result, there isn’t a single line of code in this chapter that doesn’t require a
properly configured host that has already been configured with working
name servers by an administrator or network configuration service.
A basic and comprehensive lookup is shown in Listing 4-2.

Listing 4-2. A Simple DNS Query Doing Its Own Recursion
#!/usr/bin/env python3
Network Programming in Python: The Basics
Basic DNS query
import argparse, dns.resolver
def lookup(name):
for qtype in ‘A’, ‘AAAA’, ‘CNAME’, ‘MX’, ‘NS’:
answer = dns.resolver.query(name, qtype,
raise_on_no_answer=False)

if answer.rrset is not None:
print(answer.rrset)

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Resolve a name
using DNS’)
parser.add_argument(‘name’, help=’name that you want to look
up in DNS’)
lookup(parser.parse_args().name)

You can see that only one type of DNS query can be attempted at a time, so
this small script runs in a loop asking for different types of records
pertaining to the single hostname that has been given as its command-line
argument. Running this against python.org will immediately teach you
several things about DNS
$ python dns_basic.py python.org
python.org. 42945 IN A 140.211.10.69
python.org. 86140 IN MX 50 mail.python.org.

python.org. 86146 IN NS ns4.p11.dynect.net.
python.org. 86146 IN NS ns3.p11.dynect.net.
python.org. 86146 IN NS ns1.p11.dynect.net.
python.org. 86146 IN NS ns2.p11.dynect.net.

Each “response” in the reply that has been returned is represented as a
sequence of objects, as you can see from the programme. The keys that are
printed on each line in order are as follows:

The name had been searched up.
The number of seconds you have to cache the name before it expires
in seconds.
The “class” IN, which indicates that you are receiving responses with
Internet addresses.
The record’s “type.” A is for an IPv4 address, AAAA is for an IPv6
address, NS is for a record that identifies a name server, and MX is for
a reply that specifies the mail server for a domain.
Finally, the “data” section contains the information needed to connect
to or contact a service.

Three things about the python.org domain are revealed in the query just
quoted. First, the A record specifies that if you wish to connect to a real
python.org system—to initiate an HTTP connection, start an SSH session,
or do anything else because the user specified python.org as the machine to
connect to—you should send your packets to IP address 140.211.10.69.
Second, the NS records indicate that if you want to query the names of any
hosts beneath python.org, you should ask the name servers
ns1.p11.dynect.net through ns4.p11.dynect.net to resolve those names for
you (ideally in the order indicated, rather than in numeric order). Finally,
you’ll need to seek up the hostname mail.python.org if you wish to send
email to someone with the @python.org email domain.
A record type CNAME can be returned by a DNS query, indicating that the
hostname you’re looking for is actually an alias for another hostname that
you’ll have to look up separately! This record type is no longer popular
because it often necessitates two round-trips, although you may still come
across it.

Getting Mail Domains Resolved
In most Python projects, resolving an e-mail domain is a valid usage of raw
DNS, as I previously stated.
The requirements for accomplishing this resolution were described most
recently in RFC 5321. They are, in brief, that if MX records exist, you must
attempt to contact those SMTP servers and, if none of them accept the
message, you must return an error to the user (or place the message on a
retry queue). If their priorities aren’t equal, try them in sequence from
lowest to greatest priority. If no MX records are present but the domain has
an A or AAAA record, you may attempt an SMTP connection to that
address. If neither record exists but a CNAME is requested, the domain
name provided should be searched for MX or A records according to the
same requirements.
Listing 4-3 explains how to put this method into practise. It works its way
through the available destinations via a series of DNS requests, reporting its
results as it goes. You could use a Python mail dispatcher to distribute e-
mail to remote hosts by modifying a function like this to return addresses
rather than just printing them.

Listing 4-3. Getting mail Domains resolved name.
#!/usr/bin/env python3
Network Programming in Python: The Basics
Looking up a mail domain - the part of an email address
after the `@`
import argparse, dns.resolver
def resolve_hostname(hostname, indent=’’):
“Print an A or AAAA record for `hostname`; follow CNAMEs if
necessary.”
indent = indent + ‘ ‘
answer = dns.resolver.query(hostname, ‘A’)
if answer.rrset is not None:

for record in answer:
print(indent, hostname, ‘has A address’, record.address)

return
answer = dns.resolver.query(hostname, ‘AAAA’)

if answer.rrset is not None:

for record in answer:
print(indent, hostname, ‘has AAAA address’, record.address)

return
answer = dns.resolver.query(hostname, ‘CNAME’)
if answer.rrset is not None:
record = answer[0]

cname = record.address
print(indent, hostname, ‘is a CNAME alias for’, cname) #?
resolve_hostname(cname, indent)
return

print(indent, ‘ERROR: no A, AAAA, or CNAME records for’,
hostname)

def resolve_email_domain(domain):
“For an email address `name@domain` find its mail server IP
addresses.”
try:
answer = dns.resolver.query(domain, ‘MX’,
raise_on_no_answer=False)
except dns.resolver.NXDOMAIN:

print(‘Error: No such domain’, domain)
return

if answer.rrset is not None:
records = sorted(answer, key=lambda record:
record.preference)
for record in records:

name = record.exchange.to_text(omit_final_dot=True)
print(‘Priority’, record.preference)

resolve_hostname(name)
else:
print(‘This domain has no explicit MX records’)

print(‘Attempting to resolve it as an A, AAAA, or CNAME’)
resolve_hostname(domain)

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Find
mailserver IP address’)

parser.add_argument(‘domain’, help=’domain that you want to
send mail to’)

resolve_email_domain(parser.parse_args().domain)

Of course, the implementation of resolve hostname() presented here is a
little shaky, as it should should make a dynamic decision between A and
AAAA records based on whether the current host is connected to an IPv4 or
IPv6 network. In fact, instead of attempting to resolve the address, we
should probably defer to our friend getsockaddr(). the hostname of the mail
server! But, since Listing 4-3 is supposed to demonstrate how DNS works, I
figured I’d give it a shot. Continue with the logic using pure DNS to see
how the queries are resolved.
Instead of publishing the mail server addresses, a genuine mail server
implementation would obviously try to deliver mail to them first and then
cease. (If it kept running over the server list after the success, it would
generate multiple copies of the e-mail, one for each server to which it was
successfully sent.) Nonetheless, this straightforward script provides a solid
overview of the procedure. As you can see, python.org currently only has
one mail server IP address.
$ python dns_mx.py python.org
This domain has 1 MX records
Priority 50
mail.python.org has A address 82.94.164.166

Of course, whether that IP belongs to a single machine or is shared by a
group of hosts is something you can’t see from the outside. Other
companies are more aggressive in giving incoming e-mails many landing
spots. The IANA now operates six e-mail servers (or, at the very least, six
IP addresses through which you can connect, regardless of how many
servers it actually operates).
$ python dns_mx.py iana.org
This domain has 6 MX records
Priority 10
pechora7.icann.org has A address 192.0.46.73

Priority 10
pechora5.icann.org has A address 192.0.46.71

Priority 10
pechora8.icann.org has A address 192.0.46.74

Priority 10
pechora1.icann.org has A address 192.0.33.71

Priority 10
pechora4.icann.org has A address 192.0.33.74

Priority 10
pechora3.icann.org has A address 192.0.33.73

By running this script against a variety of domains, you’ll be able to see
how large and small businesses handle inbound e-mail routing to IP
addresses.

Conclusion.
Hostnames must frequently be converted into socket addresses so that
Python programmes can connect to them.
The getsockaddr() function in the socket module should be used for most
hostname lookups because its intelligence is usually provided by your
operating system, and it will know not only how to look up domain names
using all of the mechanisms available to it, but also what flavour of address
(IPv4 or IPv6) the local IP stack is configured to support.
IPv4 addresses are still the most popular on the Internet, although IPv6
addresses are becoming more common. Your Python programme can regard
addresses as opaque strings and not have to worry about parsing or
interpreting them by deferring all hostname and port name search to
getsockaddr().
The DNS, a globally distributed database that directs domain name
inquiries to the servers of the domain owner, is at the heart of most name
resolution. While it is not commonly used directly from Python, it can be
useful for determining where to send e-mail based on the e-mail domain
listed after the @ sign in an e-mail address.
After you’ve learned how to name the hosts to which you’ll connect
sockets, move on to Chapter 5 to learn about the various options for
encrypting and delimiting the data payloads you’ll send.

CHAPTER 5
Data and Errors on the Internet

The first four chapters of this book demonstrated how IP hosts are called
and how to set up and tear down TCP streams and UDP datagram
connections between hosts. However, how should data be prepared for
transmission?

Structure
Strings and Bytes
Character Strings
Network Byte Order and Binary Numbers
Quoting and framing
Pickles and Self-delimiting Formats
JSON And XML
Compression
Exceptions in the Network
Raising More Specific Exceptions
Network Exceptions: Detecting and Reporting
Conclusion

Objectives:
What format and encoding should be used? What kinds of errors should
Python applications be prepared for? Whether you’re utilising streams or
datagrams, these questions are all applicable, and this chapter gives all of
the essential solutions.

Strings and Bytes

Both computer memory chips and network cards use the byte as their
standard unit of measurement. This little 8-bit data payload has evolved into
our worldwide unit of data storage. However, there is a distinction to be
made between memory chips and network cards. Python may totally hide
the decisions it takes as your programme runs regarding how to represent
numbers, strings, lists, and dictionaries in memory. You can’t view the bytes
that these data structures are stored with unless you use special debugging
tools; all you can see is how they act from the outside.
Because the socket interface exposes bytes and makes them available to
both the programmer and the application, network communication is
unique. When working with networks, you can’t help but worry about how
data will be represented on the wire, which introduces issues that a high-
level language like Python would otherwise avoid.
Let’s look at the qualities of bytes now.

The smallest unit of information is a bit. It’s a digit that might be zero
or one. A bit is commonly implemented in electronics as a wire with a
voltage that is either hot or linked to ground.
A byte is made up of eight bits.

The bits must be arranged in a logical order so that you can determine
which is which. When writing a binary number like 01100001, you order
the digits in the same way you do when writing base-ten numbers, with the
most significant bit first (just like in the decimal number 234, the 2 is the
most significant and the 4 is the least significant, because the hundreds
place makes a bigger difference in the number’s magnitude than the tens or
ones places).
A number between 00000000 and 11111111 can be used to represent a
single byte. These are the decimal values 0 and 255, if you do the math.
Because you can wrap around backward from 0 to get to the greatest byte
values in the 0 to 255 range, you may also interpret them as negative
numbers. 10000000 through 11111111, which would ordinarily be 128
through 255, are sometimes interpreted as -128 through -1 instead, because
the most important digit tells you whether the number is positive or
negative. (Arithmetic with two’s complement is known as two’s
complement arithmetic.) You can also use a variety of more intricate rules
to interpret a byte, such as utilising a table to give a symbol or meaning to

the byte, or combining the byte together with other bytes to construct even
larger numbers.
Because a byte could have a range of different lengths on different systems
in the past, network standards use the term octet to refer to the 8-bit byte.
Bytes are typically represented in Python in one of two ways: as an integer
with a value between 0 and 255, or as a length-1 byte string with the byte
being the sole value it contains. Any of the common bases allowed in
Python source code—binary, octal, decimal, and hexadecimal—can be used
to type a byte-valued number.
>>> 0b1100010
98
>>> 0b1100010 == 0o142 == 98 == 0x62
True

You can convert a list of such numbers to a byte string by using the bytes()
type within a sequence, and you can convert back by iterating over the byte
string.
>>> b = bytes([0, 1, 98, 99, 100])
>>> len(b)
5
>>> type(b)
<class ‘bytes’>
>>> list(b)
[0, 1, 98, 99, 100]

The repr() method of a byte string object uses ASCII characters as a
shorthand for array elements whose byte values happen to correspond to
printable character codes, and it uses the explicit hexadecimal format xNN
only for bytes that do not correspond to a printable ASCII character. This
can be confusing.
>>> b
b’\x00\x01bcd’

But don’t be fooled: byte strings aren’t fundamentally ASCII in terms of
semantics, and they’re only meant to represent 8-bit byte sequences.

Character Strings

You’ll need an encoding that assigns each symbol to a valid byte value if
you truly want to send a string of symbols over a socket. The most widely
used encoding is ASCII, which stands for American Standard Code for
Information Interchange and defines character codes 0 to 127 that can be
stored in 7 bits. As a result, the most significant bit in ASCII is always 0
when represented in bytes. Because codes 0 through 31 indicate control
orders for an output display rather than real glyphs like letters, numbers,
and punctuation, they are not visible in a fast chart like the one below. As
you can see, the three consecutive 32-character tiers of ASCII characters
that do represent glyphs are: a first tier of punctuation and digits, then an
uppercase letter tier, and finally a lowercase letter tier:
>>> for i in range(32, 128, 32):
... print(‘ ‘.join(chr(j) for j in range(i, i+32)))
...
! “ # $ % & ‘ () * + , - . / 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
@ A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [\] ^
_
` a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~

By the way, the character in the upper-left corner is the space, which has the
code 32. (Oddly enough, the invisible character in the lower-right corner is
one last control character: Delete at position 127.) In this 1960 encoding,
there are two interesting tricks to notice. The digits are first sorted so that
the mathematical value of any digit can be computed by subtracting the
code for the digit zero. You can also switch between uppercase and
lowercase letters by flipping the 32’s bit, or force letters to one case or the
other by setting or clearing the 32’s bit on a full string of characters.
However, the character codes that Python 3 can contain in its strings go
much beyond ASCII. We now have character code assignments for numbers
that go beyond the 128 ASCII codes and into the thousands and even
millions, thanks to a more modern standard known as Unicode. Python
believes strings to be a sequence of Unicode characters, and the actual
representation of Python strings in RAM, as with all Python data structures,
is kept hidden from you while you interact with the language. However,
while working with data in files or over a network, you’ll need to consider
external representation and two concepts that will help you distinguish
between the meaning of your data and how it’s transferred or stored:

Encoding characters entails converting a string of Unicode characters into
bytes that can be transferred outside of your Python programme.
Converting a byte string into real characters is known as decoding byte
data.
If you imagine the outside world as bytes stored in a secret code that must
be interpreted or cracked before your Python software can execute them
correctly, it might help you recall which conversions these words refer to.
Data must be encoded before it can be moved outside of your Python
programme, and it must be decoded before it can be returned.
There are many different types of encodings in use around the world. They
are divided into two groups.
The most basic encodings are one-byte encodings, which can only encode
256 distinct characters but guarantee that each character fits into a single
byte. When writing network code, these are simple to use. You know that
reading n bytes from a socket will produce n characters, and you also know
that when a stream is broken into pieces, each byte is a stand-alone
character that can be safely processed without knowing what byte will come
after it. You can also look at the nth byte to find character n in your input
right away.
Multibyte encodings are more complex, and each of these advantages is
lost. Some, such as UTF-32, employ a fixed amount of bytes per character,
which is inefficient when data contains largely ASCII characters but has the
advantage of ensuring that each character is always the same length. Others,
such as UTF-8, vary the number of bytes each character takes up,
necessitating extreme caution; if the data stream is delivered in pieces, there
is no way to know whether a character has been split across the boundary or
not, and you can’t find character n without starting at the beginning and
reading until you’ve read that many characters.
The codecs module documentation in the Standard Library contains a list of
all the encodings that Python supports.
The majority of Python’s single-byte encodings are ASCII extensions that
employ the remaining 128 values for region-specific letters and symbols:
>>> b’\x67\x68\x69\xe7\xe8\xe9’.decode(‘latin1’)
‘ghiçèé’
>>> b’\x67\x68\x69\xe7\xe8\xe9’.decode(‘latin2’)

‘ghiç
é’
>>> b’\x67\x68\x69\xe7\xe8\xe9’.decode(‘greek’)
‘ghihqi’
>>> b’\x67\x68\x69\xe7\xe8\xe9’.decode(‘hebrew’)
‘ghihqi’

The same may be said for the numerous Windows code pages mentioned in
the Standard Library. A few single-byte encodings, on the other hand, have
nothing in common with ASCII because they are based on obsolete IBM
mainframe standards.
>>> b’\x67\x68\x69\xe7\xe8\xe9’.decode(‘EBCDIC-CP-BE’)
‘ÅÇÑXYZ’

The old UTF-16 scheme (which had a brief heyday back when Unicode was
much smaller and could fit into 16 bits), the modern UTF-32 scheme, and
the universally popular variable-width UTF-8 that looks like ASCII until
you start including characters with codes greater than 127) are the multibyte
encodings that you are most likely to encounter. Here’s how a Unicode
string looks when all three are used:
>>> len(‘Namárië!’)
8
>>> ‘Namárië!’.encode(‘UTF-16’)
b’\xff\xfeN\x00a\x00m\x00\xe1\x00r\x00i\x00\xeb\x00!\x00’
>>> len(_)
18
>>> ‘Namárië!’.encode(‘UTF-32’)
b’\xff\xfe\x00\x00N\x00\x00\x00a\x00\x00\x00m\x00\x00\x00\xe1\
x00\x00\x00r\x00\x00\x00i\x00\x00\
x00\xeb\x00\x00\x00!\x00\x00\x00’
>>> len(_)
36
>>> ‘Namárië!’.encode(‘UTF-8’)
b’Nam\xc3\xa1ri\xc3\xab!’
>>> len(_)
10

You should be able to find the plain ASCII letters N, a, m, r, and I sprinkled
among the byte values representing non-ASCII characters if you look

closely at each encoding.
The multibyte encodings each have an extra character, bringing UTF-16 to
a total of (8 2) + 2 bytes and UTF-32 to a total of (8 4) + 4 bytes. The byte
order marker (BOM) is a special character that allows readers to
automatically determine whether the many bytes of each Unicode character
are stored with the most significant or least significant byte first. (For
further information on byte order, see the following section.)
When working with encoded text, you’ll run across two common errors:
attempting to load from an encoded byte string that doesn’t truly meet the
encoding rules you’re trying to decode, and attempting to encode characters
that can’t be represented in the encoding you’re seeking.
>>> b’\x80’.decode(‘ascii’)
Traceback (most recent call last):
...

UnicodeDecodeError: ‘ascii’ codec can’t decode byte 0x80 in
position 0: ordinal not in range(128)
>>> ‘ghihqi’.encode(‘latin-1’)
Traceback (most recent call last):
...

UnicodeEncodeError: ‘latin-1’ codec can’t encode characters in
position 3-5: ordinal not in range(256)

You should usually remedy such issues by verifying whether you’re using
the incorrect encoding or figuring out why your data isn’t adhering to the
encoding you anticipate. If neither fix works, and you discover that your
code has to deal with mismatches between specified encodings and actual
strings and data on a regular basis, you should read the Standard Library
documentation to learn about other ways to deal with problems instead of
throwing exceptions.
>>> b’ab\x80def’.decode(‘ascii’, ‘replace’)
‘ab⍰ def’

>>> b’ab\x80def’.decode(‘ascii’, ‘ignore’)
‘abdef’
>>> ‘ghihqi’.encode(‘latin-1’, ‘replace’)
b’ghi???’
>>> ‘ghihqi’.encode(‘latin-1’, ‘ignore’)
b’ghi’

These are explained in the codecs module’s Standard Library
documentation, and more examples may be found in Doug Hellman’s
Python Module of the Week section on codecs.
It’s worth repeating that decoding a partially received message using an
encoding that encodes some characters with several bytes is risky, because
one of those characters may have been divided between the part of the
message you’ve already received and the packets that haven’t yet arrived.
Some approaches to this issue can be found in the “Framing and Quoting”
section later in this chapter.

Network Byte Order and Binary Numbers
If all you ever want to send across the network is text, the only issues you’ll
have to deal with are encoding and framing (which you’ll learn about in the
next section).
However, there may be occasions when you want to convey your facts in a
more concise style than text allows.
Alternatively, you could be building Python code to communicate with a
service that has already decided to use raw binary data. In any event, you’ll
have to start thinking about a new problem: network byte order.
Consider the procedure of sending an integer over the network to grasp the
issue of byte order. Consider the number 4253 in particular.
Many protocols, however, will simply transmit this integer as the string
‘4253,’ which consists of four different characters. In any of the common
text encodings, the four numbers will require at least four bytes to convey.
Because numbers are not stored in computers in base 10, using decimal
digits will require repeated division—with inspection of the remainder—for
the programme transmitting the value to realise that this number is in reality
made up of 4 thousands, plus 2 hundreds, plus 5 tens, with 3 left over.
When the four-digit string ‘4253’ is received, it will take repeated addition
and multiplication by powers of ten to turn the text into a number.
Despite its length, the method of utilising plain text for numbers may be the
most widely used on the Internet today. When you request a web page, for
example, the HTTP protocol communicates the result’s Content-Length as a
string of decimal digits like ‘4253.’ Despite the cost, both the web server
and the client perform the decimal conversion without hesitation. In reality,

the replacement of dense binary formats with protocols that are clear,
obvious, and human-readable—even if computationally expensive
compared to their predecessors—has been a big part of networking’s storey
during the last 20 years.
Multiplication and division are, of course, less expensive on modern
processors than they were when binary formats were more common—not
only because processors have become much faster, but also because their
designers have become much more clever about implementing integer
math, so that the same operation takes far fewer cycles today than it did in
the early 1980s.
In any case, your computer’s representation of this number as an integer
variable in Python is not the string ‘4253.’
Instead, it will save it as a binary integer, with the ones, twos, fours, and so
on of a single huge number represented by the bits of numerous successive
bytes. Using the hex() built-in function at the Python prompt, you can see
how the integer is stored.
>>> hex(4253)
‘0x109d’

Because each hex digit is four bits long, each pair of hex digits comprises a
byte of data. The number is stored as a most significant byte 0x10 and a
least significant byte 0x9d, adjacent to one another in memory, rather than
four decimal digits (4, 4, 2, and 3), with the first 4 being the “most
significant” digit (since changing its value would throw the number off by a
thousand) and 3 being the least significant digit.
But what is the best sequence for these two bytes to appear? We’ve reached
a point where the architectures of different computer processor brands
diverge significantly. While they will all agree that bytes in memory have
an order and that a string like Content-Length: 4253 should be stored in that
order starting with C and ending with 3, they will not agree on the order in
which binary numbers should be kept.
Some computers are “big-endian” (for example, older SPARC processors)
and place the most significant byte first, just like we do when writing
decimal digits; other computers (such as the nearly ubiquitous x86
architecture) place the least significant byte first (where “first” means “at
the byte with the lower memory address”).

Danny Cohen’s paper IEN-137, “On Holy Wars and a Plea for Peace,”
which introduced the terms big-endian and little-endian in a parody of
Jonathan Swift, is worth reading for a humorous historical perspective on
this issue: www.ietf.org/rfc/ien/ien137.txt.
Python makes the distinction between the two endians obvious. Simply
utilise the struct module, which has a number of procedures for translating
data between binary forms. The number 4253 is represented in little-endian
order first, then in big-endian order:
>>> import struct
>>> struct.pack(‘<i’, 4253)
b’\x9d\x10\x00\x00’
>>> struct.pack(‘>i’, 4253)
b’\x00\x00\x10\x9d’

For a little number like 4253, I used the struct formatting code I which uses
four bytes to represent an integer and leaves the two top bytes zero. If it
helps you remember which one to use, think of the struct endianness codes
“ and ‘>’ for these two orders as small arrows pointing toward the least
significant end of a string of bytes. The full list of data formats supported
by the struct module may be found in the Standard Library’s
documentation. It also has an unpack() method for converting binary data to
Python numbers.
>>> struct.unpack(‘>i’, b’\x00\x00\x10\x9d’)
(4253,)

If the big-endian format makes more intuitive sense to you, you’ll be happy
to know that it “won” the competition to choose which endianness would
become the standard for network data. As a result, the struct module adds a
new symbol, ‘!’, to pack() and unpack() that communicates to other
programmers (and, of course, to yourself as you read the code afterwards),
“I am packing this data so that I may send it over the network.”
In conclusion, here is my recommendation for preparing binary data for
transmission over a network socket:

Use the struct module to create binary data for network transmission
and to unpack it when it arrives.
If you have control over the data format, use the ‘!’ prefix to select
network byte order. If the protocol was designed by someone else and

http://www.ietf.org/rfc/ien/ien137.txt

little-endian was specified, you must use “ instead.

Always test struct to see how it organises your data in comparison to the
protocol’s standard; notice that the packing format string’x’ characters can
be used to insert padding bytes.
In order to convert integers into byte strings in network order, older Python
code might require a slew of oddly named functions from the socket
module. These methods have names like ntohl() and htons(), and they
match to POSIX networking library functions of the same name, which also
include calls like socket() and bind() (). I recommend that you skip these
inconvenient functions and instead use the struct module, which is more
versatile, broad, and provides more understandable code.

Quoting and framing
If you’re communicating with UDP datagrams, the protocol will transfer
your data in discrete and identifiable pieces. If something goes wrong on
the network, you’ll have to reorganise and retransmit those pieces manually,
as described in Chapter 2.
However, if you’ve selected the far more popular option of communicating
via a TCP stream, you’ll have to deal with the problem of framing—that is,
how to delimit your messages so that the receiver knows where one
message ends and the next one begins. Because the data you submit to
sendall() may be split into many packets for real network delivery, Before
the entire message is read, the application that gets it may have to make
numerous recv() calls—or it may not, if all the packets arrive before the
operating system has a chance to schedule the process again!
When is it safe for the receiver to cease running recv() since the entire
message or data has arrived intact and complete, and it can now be
interpreted or acted upon as a whole?
As you may expect, there are a variety of techniques.
For starters, there’s a pattern that may be employed by very simple network
protocols that merely entail data delivery—no response is needed, thus the
receiver never has to say “Enough!” and turn around to give a response.
The sender can loop until all of the outgoing data has been given to
sendall() and then shut() the socket in this scenario. The receiver just needs

to use recv() multiple times until the call returns an empty string, indicating
that the sender has closed the socket. This pattern can be seen in Listing 5-
1.

Listing 5-1: Simply send all of your data and then disconnect.
#!/usr/bin/env python3
Network Programming in Python: The Basics
Client that sends data then closes the socket, not expecting
a reply.
import socket
from argparse import ArgumentParser
def server(address):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(address)
sock.listen(1)
print(‘Run this script in another window with “-c” to
connect’)
print(‘Listening at’, sock.getsockname())
sc, sockname = sock.accept()
print(‘Accepted connection from’, sockname)
sc.shutdown(socket.SHUT_WR)
message = b’’
while True:
more = sc.recv(8192) # arbitrary value of 8k
if not more: # socket has closed when recv() returns ‘’
print(‘Received zero bytes - end of file’)
break
print(‘Received {} bytes’.format(len(more)))
message += more
print(‘Message:\n’)
print(message.decode(‘ascii’))
sc.close()
sock.close()

def client(address):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(address)

sock.shutdown(socket.SHUT_RD)
sock.sendall(b’Beautiful is better than ugly.\n’)
sock.sendall(b’Explicit is better than implicit.\n’)
sock.sendall(b’Simple is better than complex.\n’)
sock.close()

if __name__ == ‘__main__’:
parser = ArgumentParser(description=’Transmit & receive a
data stream’)
parser.add_argument(‘hostname’, nargs=’?’,
default=’127.0.0.1’,
help=’IP address or hostname (default: %(default)s)’)
parser.add_argument(‘-c’, action=’store_true’, help=’run as
the client’)
parser.add_argument(‘-p’, type=int, metavar=’port’,
default=1060,
help=’TCP port number (default: %(default)s)’)
args = parser.parse_args()
function = client if args.c else server
function((args.hostname, args.p))

If you run this script as a server and then run the client version from a
different command prompt, you’ll notice that all of the client’s data gets it
to the server intact, with the only framing required being the end-of-file
event triggered by the client closing the socket.
$ python streamer.py
Run this script in another window with “-c” to connect
Listening at (‘127.0.0.1’, 1060)
Accepted connection from (‘127.0.0.1’, 49057)
Received 96 bytes
Received zero bytes - end of file
Message:
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.

The client and server both go ahead and shut down communication in the
direction they do not intend to use, which is a nicety because this socket is
not supposed to receive any data. This avoids any unintentional use of the
socket in the opposite direction, which could eventually result in a

deadlock, as seen in Listing 3-2 in Chapter 3. Although only one of the
client or server needs to call shutdown() on the socket, doing it from both
directions gives symmetry and redundancy.
A second pattern is a variation on the first: it streams both ways. The socket
is left open in both directions at first. Data is first transmitted in one
direction (just as described in Listing 5-1), and then that direction is turned
off. The socket is subsequently closed after data is streamed in the opposite
direction. Listing 3-2 from Chapter 3 highlights an essential caution: always
complete the data transfer in one direction before turning around to stream
data back in the other, otherwise you risk creating a blocked client and
server.
The usage of fixed-length messages, as shown in Listing 3-1, is a third
pattern that was also demonstrated in Chapter 3. You can send your byte
string using Python’s sendall() method, and then use a custom recv() loop to
ensure that you receive the entire message.
def recvall(sock, length):
data = ‘’
while len(data) < length:
more = sock.recv(length - len(data))
if not more:
raise EOFError(‘socket closed {} bytes into a {}-byte’
‘ message’.format(len(data), length))
data += more
return data

Because so little data fits within static bounds these days, fixed-length
messages are uncommon. However, it may be a suitable fit for certain cases
when transferring binary data (think of a struct format that always outputs
data blocks of the same length, for example).
A fourth pattern is to use special characters to delimit your messages. The
receiver would stay in a recv() loop like the one above until the reply string
it was accumulating eventually contained the delimiter signalling the end-
of-message. If the message’s bytes or characters are certain to fall within a
certain range, the logical choice is to finish each message with a symbol
from outside that range. If you were sending ASCII strings, for example,
you might use the null character ‘0’ or a character completely outside the
ASCII range like ‘xff’ as the delimiter.

If the message can instead contain any data, using a delimiter becomes
problematic: what if the character you’re trying to use as a delimiter also
appears in the data? Of course, quoting is the answer, just as representing a
single-quote character as’in the middle of a Python string bounded by
single-quote characters is.
‘All\’s well that ends well.’

Nonetheless, I recommend employing a delimiter scheme only when your
message alphabet is limited; accurate quoting and unquoting is frequently
too difficult to accomplish when dealing with random data. For one thing,
your check to see if the delimiter has come now must ensure that you aren’t
mixing up a quoted delimiter with a real one that closes the message. A
second complication is that you must then go through the message again to
remove the quotation characters that were safeguarding literal delimiter
occurrences. Finally, it means that you can’t tell how long a message is until
you’ve decoded it; a message with a length of 400 could be 400 symbols
long.
Prefixing each message with its length is a fifth pattern. Because blocks of
binary data may be delivered verbatim without needing to be parsed,
quoted, or interpolated, this is a popular choice for high-performance
protocols. Of course, the length must be expressed using one of the
approaches described previously—for example, the length is frequently
expressed as a fixed-width binary integer or as a variable-length decimal
string followed by a textual delimiter. Once the length has been read and
decoded, the receiver can enter a loop and continuously call recv() until the
entire message has arrived. The loop can look just like the one in Listing 3-
1, except instead of the number 16, a length variable can be used.
Finally, what if you want the fifth pattern’s simplicity and efficiency but
don’t know the length of each message ahead of time—perhaps because the
sender is reading data from a source whose length they can’t predict?
Do you have to give up elegance and trawl through the data looking for
delimiters in such cases?
If you use the sixth and final pattern, you won’t have any problems with
unknown lengths. Rather than sending just one, consider sending many
blocks of data, each prefixed with the length. This means that as fresh data
becomes available to the sender, each chunk can be identified with its
length and added to the outgoing stream. When the time comes to say good-

bye, The sender can send an agreed-upon signal—for example, a length
field with the number zero—informing the receiver that the sequence of
blocks is finished.
Listing 5-2 is a simple illustration of this concept. This listing, like the
previous one, sends data in only one direction—from the client to the server
—but the data structure is far more fascinating than the previous one.
Each message is preceded by a struct containing a 4-byte length. Each
frame can be up to 4GB in size because ‘I’ stands for a 32-bit unsigned
integer. This sample code sends three blocks to the server, followed by a
zero-length message (a length field with zeros within and no message
contents following it), to the server the series of blocks is over.

Listing 5-2. Framing Each Data Block by Preceding It with Its Length.
#!/usr/bin/env python3
Network Programming in Python: The Basics
Sending data over a stream but delimited as length-prefixed
blocks.
import socket, struct
from argparse import ArgumentParser
header_struct = struct.Struct(‘!I’) # messages up to 2**32 - 1
in length
def recvall(sock, length):
blocks = []
while length:
block = sock.recv(length)
if not block:
raise EOFError(‘socket closed with %d bytes left’
‘ in this block’.format(length))
length -= len(block)
blocks.append(block)
return b’’.join(blocks)
def get_block(sock):
data = recvall(sock, header_struct.size)
(block_length,) = header_struct.unpack(data)
return recvall(sock, block_length)
def put_block(sock, message):
block_length = len(message)

sock.send(header_struct.pack(block_length))
sock.send(message)
def server(address):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
sock.bind(address)
sock.listen(1)
print(‘Run this script in another window with “-c” to
connect’)
print(‘Listening at’, sock.getsockname())
sc, sockname = sock.accept()
print(‘Accepted connection from’, sockname)
sc.shutdown(socket.SHUT_WR)
while True:
block = get_block(sc)
if not block:
break
print(‘Block says:’, repr(block))
sc.close()
sock.close()
def client(address):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(address)
sock.shutdown(socket.SHUT_RD)
put_block(sock, b’Beautiful is better than ugly.’)
put_block(sock, b’Explicit is better than implicit.’)
put_block(sock, b’Simple is better than complex.’)
put_block(sock, b’’)
sock.close()
if __name__ == ‘__main__’:
parser = ArgumentParser(description=’Transmit & receive blocks
over TCP’)
parser.add_argument(‘hostname’, nargs=’?’,
default=’127.0.0.1’,
help=’IP address or hostname (default: %(default)s)’)
parser.add_argument(‘-c’, action=’store_true’, help=’run as
the client’)

parser.add_argument(‘-p’, type=int, metavar=’port’,
default=1060,
help=’TCP port number (default: %(default)s)’)
args = parser.parse_args()
function = client if args.c else server
function((args.hostname, args.p))

Take note of how cautious you must be! Even though the 4-byte length field
is such a small amount of data that you might not think recv() could
possibly return it all at once, the code is correct only if recv() is carefully
wrapped in a loop. script will keep requesting more data until all four bytes
have come (just in case). This is the type of warning that is required. When
writing network programming, this is a must.
As a result, you have at least six possibilities for breaking down an endless
stream of data into manageable bits. Clients and servers can turn around and
respond when a message is complete. a lot of modern Protocols combine
them, and you are allowed to do so as well.
The HTTP protocol, which you will study more about later in this book, is a
nice example of a mashup of multiple framing approaches. It employs the
blank line ‘rnrn’ as a delimiter to indicate when its headers are complete.
Line endings can be safely regarded as special characters because the
headers are text. However, because the actual payload can be pure binary
data, such as an image or compressed file, the headers include a Content-
Length parameter in bytes to determine how much more data to read off the
socket once the headers have been read.
As a result, HTTP combines the fourth and fifth patterns you’ve seen thus
far. It can, in fact, make advantage of the sixth option: If a server cannot
estimate the duration of a response, HTTP can employ “chunked encoding,”
which delivers a sequence of blocks each prefixed with the length of the
response. A zero-length field, as shown in Listing 5-2, indicates the end of
the transmission.

Pickles and Self-delimiting Formats
It’s worth noting that some types of data you might transfer over the
network already have built-in delimiters. You may not need to impose your

own framing on top of what the data is already doing if you are conveying
such data.
Consider Python’s native form of serialisation, “pickles,” which comes with
the Standard Library. A pickle preserves the contents of a Python data
structure using a strange mix of text commands and data so that you can
rebuild it later or on a different system.
>>> import pickle
>>> pickle.dumps([5, 6, 7])
b’\x80\x03]q\x94(K\x05K\x06K\x07e.’

The ‘.’ character at the end of the preceding string is the most intriguing
aspect of this output data. It’s how the format marks the conclusion of a
pickle. When the loader comes across it, it can stop and return the value
without reading any further. As a result, you can take the preceding pickle
and add some ugly stuff at the end, and loads() will disregard the extra data
and return the original list.
>>>

pickle.loads(b’\x80\x03]q\x94(K\x05K\x06K\x07e.blahblahblah’)

[5, 6, 7]

Of course, this method is ineffective for network data since it does not
indicate how many bytes were processed to reload the pickle; you still have
no idea how much of the string is pickle data. If you use the pickle load()
function to read from a file, the file pointer will stay at the end of the pickle
data, and you can begin reading from there if you want to read what comes
after the pickle.
>>> from io import BytesIO
>>> f =
BytesIO(b’\x80\x03]q\x94(K\x05K\x06K\x07e.blahblahblah’)
>>> pickle.load(f)
[5, 6, 7]
>>> f.tell()
14
>>> f.read()
b’blahblahblah’

You could also design a protocol that consisted solely of transmitting
pickles back and forth between two Python applications. Because the pickle
library knows all about reading from files and how it might have to make

repeated reads until a full pickle has been read, you wouldn’t require the
kind of loop you put in the recvall() function in Listing 5-2. If you want to
wrap a socket in a Python file object for consumption by a routine like the
pickle load() function, use the makefile() socket method (described in
Chapter 3).
Pickling huge data structures has many nuances, especially if they contain
Python objects other than simple built-in types like integers, strings, lists,
and dictionaries.

JSON And XML
The JSON and XML data formats are also common choices if your protocol
needs to be readable from other programming languages or if you simply
prefer universal standards than Python-specific forms. Because neither of
these formats supports framing, you’ll need to find out how to get a whole
string of text from across the network before you can analyse it.
JSON is one of the most used options for transferring data between
computer languages today. It has been included in the Standard Library as a
module named json since Python 2.6. It provides a method for serialising
simple data structures that is ubiquitous.
>>> import json
>>> json.dumps([49, ‘hello!’])
‘[49, “hello!]’
>>> json.dumps([49, ‘hello!’], ensure_ascii=False)
‘[49, “hello!”]’
>>> json.loads(‘{“name”: “bob”, “quest”: “how are you?”}’)
{‘quest’: ‘how are you?’, ‘name’: ‘bob’}

Note that JSON not only supports Unicode characters in its strings, but it
may also include Unicode characters inline in its payload if you inform the
Python json module that its output does not have to be limited to ASCII
characters. It’s also worth noting that the JSON representation is defined as
producing a string, which is why the json module’s input and output are full
strings rather than Python byte objects. Strings should be encoded as UTF-8
for transmission over the wire, as per the JSON standard.
Because its primary nature is to accept strings and mark them up by
surrounding them in angle-bracketed components, the XML format is

preferable for documents. For the time being, just remember that you don’t
have to limit your use of XML to when you’re using the HTTP protocol.
There may be times when you need text markup and find XML to be useful
in conjunction with another standard.
Binary formats like Thrift and Google Protocol Buffers, which are a bit
different from the formats previously outlined because both the client and
the server need to have a code description of what each message will
include, are among the many alternative formats that developers might wish
to examine. These systems, on the other hand, have allowances for different
protocol versions, allowing new servers to go into production while still
communicating with machines running an older protocol version until they
can all be updated to the new one. They’re quick and easy to use, and they
can handle binary data with ease.

Compression
Because the time it takes to send data over the network is typically greater
than the time it takes for your CPU to prepare the data for transmission,
compressing data before sending is sometimes worthwhile. As you’ll see in
Chapter 9, the popular HTTP protocol allows a client and server to
determine whether they can both support compression.
The GNU zlib facility, which is available through the Python Standard
Library and is one of the most widely used forms of compression on the
Internet today, is self-framing, which is a noteworthy feature. If you start
feeding it a compressed stream of data, it will tell you when it’s finished
and provide you access to the uncompressed payload that may follow.
Most protocols prefer to execute their own framing and then provide the
resulting block to zlib for decompression if required. You might, however,
make a promise to yourself that you’ll always add a bit of uncompressed
data to the end of each zlib compressed string (here, I’ll use a single b’.’
byte) and wait for your compression object to break out that “extra data” as
a signal that you’re done.
Consider the following pairing of compressed data streams:
>>> import zlib
>>> data = zlib.compress(b’Python’) + b’.’ +
zlib.compress(b’zlib’) + b’.’

>>> data
b’x\x9c\x0b\xa8,\xc9\xc8\xcf\x03\x00\x08\x97\x02\x83.x\x9c\xab
\xca\xc9L\x02\x00\x04d\x01\xb2.’
>>> len(data)
28

When given small payloads, most compression algorithms tend to make
them longer rather than shorter since the overhead of the compression
format overwhelms any small amount of compressibility in the payload.
Assume that these 28 bytes arrive in 8-byte packets at their destination.
After processing the first packet, the decompression object’s unused data
slot will still be empty, indicating that there is more data on the way.
>>> d = zlib.decompressobj()
>>> d.decompress(data[0:8]), d.unused_data
(b’Pytho’, b’’)

As a result, you’ll need to recv() the socket once more. When you feed the
second block of eight characters to the decompress object, it will both
complete the compressed data you were waiting for and return a nonempty
unused data value, indicating that you have finally received the b’.’ byte:
>>> d.decompress(data[8:16]), d.unused_data
(‘n’, ‘.x’)

After the period, the next character must be the first byte of whatever
payload follows this first bit of compressed data. Because you’re expecting
more compressed data here, you’ll pass the ‘x’ to a new decompress object,
and then feed the last 8-byte “packets” you’re simulating to it.
>>> d = zlib.decompressobj()
>>> d.decompress(b’x’), d.unused_data
(b’’, b’’)
>>> d.decompress(data[16:24]), d.unused_data
(b’zlib’, b’’)
>>> d.decompress(data[24:]), d.unused_data
(b’’, b’.’)

unused data is now nonempty, indicating that you have read past the end of
this second batch of compressed data and can study its content with
confidence that it has arrived complete and intact. Most protocol designers,
once again, make compression optional and conduct their own framing.
However, if you know you’ll always want to use zlib, a convention like this

will allow you to take advantage of zlib’s built-in stream termination and
autodetect the end of each compressed stream.

Exceptions in the Network
The exceptions that are caught by the example scripts in this book are
usually ones that are critical to the feature being presented. As a result,
when I showed socket timeouts in Listing 2-2, I made sure to catch the
exception socket.timeout because that’s how timeouts are signalled. I
ignored all of the other exceptions that will occur if the command line
hostname is wrong, bind() is used with a remote IP, the port used with
bind() is already busy, or the peer cannot be contacted or stops replying.
Working with sockets can lead to a variety of issues. Though the number of
mistakes that can occur while using a network connection is extremely large
—involving every conceivable misstep that can occur at every level of the
complex TCP/IP protocol—the number of real exceptions that socket
operations can impact your programmes is thankfully quite small. The
following are exceptions that are particular to socket operations:

OSError: This is the socket module’s workhorse, and it will be raised for
almost every problem that can occur during network transmission. This can
happen at any time during a socket call, even when you don’t expect it.
When a previous send(), for example, evoked a reset (RST) packet from the
remote host, the error caused by any socket operation you try next on that
socket will be visible.
socket.gaierror: Getaddrinfo() throws an exception because it can’t find
the name or service you’re looking for, which is why the letters g, a, and I
are in its name. It can be raised not just when you explicitly call
getaddrinfo(), but also when you call bind() or connect() with a hostname
instead of an IP address and the hostname lookup fails. If you catch this
exception, you can search for the error number and message inside the
exception object.
>>> import socket
>>> s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
>>> try:
... s.connect((‘nonexistent.hostname.foo.bar’, 80))
... except socket.gaierror as e:

... raise

...
Traceback (most recent call last):
...
socket.gaierror: [Errno -2] Name or service not known
>>> e.errno
-2
>>> e.strerror
‘Name or service not known’

This exception is only thrown if you, or a library you’re using, chooses to
put a timeout on a socket rather than waiting indefinitely for a send() or
recv() to complete. It means that the timeout ran out before the operation
could finish normally.

An herror exception is also described in the Standard Library
documentation for the socket module. Fortunately, it will only happen if
you utilise specific old-fashioned address lookup calls rather than the
procedures specified in Chapter 4.
When using Python’s higher-level socket-based protocols, one of the most
important questions is whether they allow raw socket errors to reach your
code or if they catch them and transform them into their own type of error.
The Python Standard Library contains examples of both ways! httplib, for
example, deems itself low-level enough to display the raw socket error that
occurs when connecting to an unrecognised hostname.
>>> import http.client
>>> h =
http.client.HTTPConnection(‘nonexistent.hostname.boo.far’)
>>> h.request(‘GET’, ‘/’)
Traceback (most recent call last):
...
socket.gaierror: [Errno -2] Name or service not known

However, urllib2 hides this problem and raises URLError instead,
presumably to preserve the semantics of being a clean and neutral system
for resolving URLs to documents.
>>> import urllib.request
>>>
urllib.request.urlopen(‘http://nonexistent.hostname.boo.far/’)

Traceback (most recent call last):
...

socket.gaierror: [Errno -2] Name or service not known
During handling of the above exception, another exception
occurred:
Traceback (most recent call last):
...

urllib.error.URLError: <urlopen error [Errno -2] Name or
service not known>

So, depending on the protocol implementation you’re using, you may only
have to deal with protocol-specific exceptions, or you may have to deal
with both protocol-specific and raw socket problems. If you’re unsure about
a library’s approach, read the documentation carefully. I’ve tried to give
insets for the key packages that I cover in later chapters of this book that
identify the possible exceptions to which each library can subject your
code. Of course, you can always start the library, give it a non-existent
hostname, or even run it while disconnected from the network to observe
what kind of issue it throws.
How should you handle all of the possible errors while creating a network
programme? Of course, this isn’t a networking-specific question.
Exceptions must be handled in all Python programmes, and the solutions I
cover briefly in this chapter are relevant to a wide range of different
programmes. Whether you’re packaging up exceptions for processing by
other programmers who contact your API or intercepting exceptions to
report them appropriately to an end user, your method will be different.

Raising More Specific Exceptions
There are two methods for providing exceptions to users of an API you’re
developing. Of course, you will be the only customer of a module or
procedure you create in many circumstances. However, consider your future
self as a customer who will have forgotten almost everything about this
module and will really appreciate its approach to exceptions for its
simplicity and clarity.
One method is to just ignore network exceptions. They will then be visible
to the caller, who will be able to catch or report them as they see fit. This
method is well suited to low-level networking routines in which the caller

can vividly imagine why you’re putting up a socket and why its setup or use
might have failed. The developer developing the calling code will only
expect a network fault if the mapping between API callables and low-level
networking actions is obvious.
The alternative option is to wrap the network failures in your own
exception. This makes it much easier for authors who aren’t familiar with
how your routines are implemented, because their code may now catch
exceptions relating to the actions your code performs without needing to
understand how sockets work. Custom exceptions also allow you to create
error messages that clarify exactly what your library was trying to do when
it ran into network issues.
Whether you construct a little mycopy() method that copies a file from one
remote system to another, for example, a socket.error will not tell the caller
if the fault occurred with the source or destination machine, or if it was
something else entirely. In this instance, it could be preferable to create your
own exceptions, such as SourceError and DestinationError, that have a
close semantic relationship with your API. If certain users of your API wish
to dig deeper, you can always add the initial socket fault by using raise...
from exception chaining.
class DestinationError(Exception):
def __str__(self):
return ‘%s: %s’ % (self.args[0], self.__cause__.strerror)

...
try:
host = sock.connect(address)

except socket.error as e:
raise DestinationError(‘Error connecting to destination’)
from e

Of course, this code assumes that DestinationError will only ever wrap
OSError descendants such as socket.error. Otherwise, to handle the
circumstance where the cause exception’s textual information is stored in an
attribute other than strerror, the __str__() method would have to be more
sophisticated. However, this does at least show the trend. After catching a
DestinationError, the caller might investigate its

Network Exceptions: Detecting and Reporting

Granular exception handlers and blanket exception handlers are the two
most common techniques of catching exceptions.
Wrapping a try...except clause around every single network call you ever
make and printing out a pithy error message in its place is the granular
approach to exceptions. While this is appropriate for short programmes, it
can become tedious in longer ones without necessarily providing the user
with more information. Ask yourself if you’re really delivering additional
information when you surround the hundredth network activity in your
software with yet another try...except and specific error message. The
alternative option is to use generic exception handlers. This entails taking a
step back from your code and recognising large sections that do specific
tasks, such as these:

“The sole point of this procedure is to connect to the licence server.”
“This function’s socket actions all retrieve a response from the
database.”
“All of the cleanup and shutdown code is in this section.”

Then the sections of your programme that collect input, command-line
arguments, and configuration settings before starting big operations can
wrap those huge actions in handlers like these:
import sys
...
try:
deliver_updated_keyfiles(...)

except (socket.error, socket.gaierror) as e:
print(‘cannot deliver remote keyfiles: {}’.format(e),
file=sys.stderr)
exit(1)

Better yet, have your code raise an error of your own devising that indicates
an error that specifically needs to halt
the program and print error output for the user.
except:
FatalError(‘cannot send replies: {}’.format(e))

Then, at the very start of your programme, catch all of the FatalError
exceptions you throw and print out the error messages. When the time
comes to add a command-line option that sends fatal errors to the system

error logs rather than the screen, you’ll only have to change one piece of
code rather than a dozen!
There’s one more reason why you might wish to include an exception
handler in your network programme: you might want to intelligently retry a
failed operation. This is frequent in long-running applications. Consider a
utility that sent out e-mails with its status on a regular basis. If it suddenly
becomes unable to send them, it is unlikely to shut down due to a temporary
problem. Instead, the e-mail thread may log the problem, then wait a few
minutes before trying again.
In such circumstances, you’ll wrap exception handlers around specified
sequences of network actions that you wish to treat as if they were a single
combined operation that succeeded or failed. “If anything goes wrong in
here, I’m just going to give up, wait ten minutes, and then try again to send
that e-mail.” Where you utilise try...except clauses will be determined by
the structure and logic of the network operations you’re executing, not by
user or programmer convenience.

Conclusion
For machine data to be shared over the internet, it must be transformed so
that, regardless of the private and idiosyncratic storage mechanisms
employed within your machine, the data is presented in a public and
reproducible format that can be read by other systems, programmes, and
possibly even programming languages.
Because 8-bit octets are the common currency of an IP network, the key
challenge for text will be which encoding to use so that the symbols you
want to send can be converted into bytes. The Python struct module will
assist you in ensuring that bytes are organised in a way that is compatible
with multiple machines when dealing with binary data. Finally, data
structures and documents are sometimes best communicated via JSON or
XML, which provide a standard mechanism for machines to share
structured data.
When working with TCP/IP streams, one of the most important
considerations is framing: how will you know where a given message
begins and finishes in a continuous stream of data? There are a variety of
methods for accomplishing this, all of which should be used with caution

because recv() may only return a portion of an incoming transmission with
each call. Special delimiter characters or patterns, fixed-length messages,
and chunked-encoding techniques are all possibilities for distinguishing
blocks of data.
Python pickles will not only convert data structures into strings that can be
sent over the network, but they will also tell the pickle module where an
incoming pickle terminates. Pickles can now be used to frame individual
messages in a stream, in addition to encoding data. The zlib compression
module, which is commonly used with HTTP, can also detect when a
compressed segment has reached its end, allowing for low-cost framing.
Sockets, as well as network protocols used by your programmes, can cause
a variety of errors. If you’re building a library for other developers or an
utility for end users, you’ll want to consider when to use try...except
clauses. It also depends on semantics: you can wrap an entire portion of
your programme in a try...unless all of that code is accomplishing one huge
thing from the caller’s or end user’s perspective. Finally, you should
encapsulate actions separately with a try...except that the call can be
automatically retried if the error is transitory and the call may succeed later.

CHAPTER 6
SSL/TLS

Transport Layer Security (TLS), originally known as the Secure Sockets
Layer (SSL) when initially introduced by Netscape in 1995, became an
Internet standard in 1999 and may be the most extensively used form of
encryption on the Internet today. It is used with many basic protocols on the
modern Internet to verify server identification and protect data in transit, as
you will see in this chapter.
The proper implementation and use of TLS is a shifting target. Each year,
new assaults on its encryption algorithms are proposed, resulting in the
development of new cyphers and methodologies. As of this Network
Programming in Python: The Basics, TLS 1.2 is the most recent version,
although further versions will undoubtedly be released in the future. As the
state of the art evolves, I’ll endeavour to keep the example scripts saved
online in the book’s source code repository up to date. As a result, be sure
to go to the URL at the top of each script in this chapter and cut and paste
from the version of the code found in version control.

Structure
What TLS Fails to Secure
What Is the Worst That Could Happen?
Producing Certificates
TLS Offloading
Default Contexts in Python 3.4
Wrapping Sockets in Different Ways
Ciphers chosen by hand and perfect forward security
Support for TLS Protocol
Details of Studying
Conclusion

Objectives:
This chapter will begin by defining TLS’s goals and discussing the methods
it employs to achieve them. Then you’ll learn how to activate and configure
TLS on a TCP socket using Python examples, both simple and complicated.
Finally, you’ll see how TLS is incorporated into the real-world protocols
covered in the rest of the book.

What TLS Fails to Secure
Anyone observing data travelling across a properly configured TLS socket
should see nonsense, as you’ll see later in this chapter. Moreover, unless the
inventors of TLS have failed mathematics, it will be nonsense that is
astonishingly impenetrable even to a computer—and even to a government
organisation with a vast budget. It should prevent eavesdroppers from
knowing the URL you request, the content you receive, or any identifying
information such as a password or cookie that might transit in either
direction through the socket, for example. (For additional detail on HTTP
features like passwords and cookies, see Chapter 9.)
Nonetheless, you should take a step back and remember that TLS does not
encrypt everything about a connection, including its contents, and that any
third party can see it.

In every packet’s IP header, the addresses of both your machine and
the other host are available as plain bytes.
Every TCP header also includes your client’s and server’s port
numbers.
The DNS request that your client made in the first place to discover
the server’s IP address most likely went unencrypted across the
network.

The size of the data chunks that transit in each direction via the TLS-
encrypted socket can be monitored by an observer. Even while TLS tries to
obscure the actual number of bytes passed, the broad pattern of requests and
responses may still be seen in roughly what sized chunks data flows.
I’ll use an example to demonstrate the prior flaws. Consider fetching
https://pypi.python.org/pypi/skyfield/ over a coffee shop’s wireless
network using a secure HTTPS client (such as your favourite web browser).

https://pypi.python.org/pypi/skyfield/

What would an observer know—an “observer” being anyone else connected
to the coffee shop’s wireless network or in charge of one of the routers
connecting it to the rest of the Internet? The observer will initially see your
system perform a DNS query for pypi.python.org, and unless the IP address
returned contains many other web sites, they will assume that your
subsequent communications with that IP address at port 443 are for the
purpose of reading https://pypi.python.org web pages. Because HTTP
is a lock-step protocol in which each request is written out in its entirety
before a response is written back, they will be able to tell the difference
between your HTTP requests and the server’s responses.
They will also know the approximate size of each returned document as
well as the order in which they were retrieved.
Consider what the observer might discover! Different sizes will be found on
different pages at https://pypi.python.org, which an observer may
catalogue by scanning the site using a web scraper (see Chapter 11).Images
and other resources that are referenced in the HTML and must be
downloaded on first viewing or if they have expired from your browser’s
cache will vary by page genre. While an outside observer may not be aware
of the particular searches you conduct or the packages you eventually view
or download, They’ll often be able to make an educated prediction based on
the approximate sizes of the files you fetch.
The big question of how to keep your browsing habits private, or any other
personal data that travels across the public Internet, is far beyond the scope
of this book, and will require research into mechanisms like online
anonymity networks (Tor, for example, has recently been in the news) and
anonymous remailers. Even with such procedures in place, your system is
still likely to send and receive data blocks whose size can be exploited to
infer what you’re doing. A sophisticated enough adversary might even
notice that your request pattern correlates to payloads leaving the
anonymous network to reach a certain location.
Instead, the remainder of this chapter will concentrate on the narrower
subject of what TLS can accomplish and how your Python programmes can
use it successfully.

What Is the Worst That Could Happen?

https://pypi.python.org/
https://pypi.python.org/

To understand about the key aspects of TLS, study the set of problems that
the protocol faces when establishing a connection and how each one is
addressed and overcome.
Let’s say you want to start a TCP conversation with a specific hostname and
port number on the Internet, and you’ve reluctantly accepted that your DNS
lookup of the hostname, as well as the port number to which you’re
connecting (which will reveal the protocol you’re using, unless you’re
connecting to a service whose owner has bound it to a nonstandard or
misleading port number), will be public knowledge. You would connect to
the IP address and port using a typical TCP connection. If the protocol
you’re talking about requires an introduction before enabling encryption,
those first few bytes would be visible to everyone.
(Protocols differ in this regard—HTTPS sends nothing before enabling
encryption, whereas SMTP sends multiple lines of text.) The behaviour of
numerous significant protocols will be covered later in this chapter.)
Once you’ve got the socket up and running, and exchanged whatever
pleasantries your protocol requires to prepare the way for encryption, it’s
time for TLS to take over and start constructing strong guarantees about
who you’re talking to and how you and the peer (the other party) will keep
data safe from prying eyes.
The initial request of your TLS client will be for the remote server to give a
binary document called a certificate, which includes a public key—an
integer that can be used to encrypt data and can only be decrypted and
understood by the owner of the associated private key integer. If the remote
server is properly configured and has never been hacked, it will have a copy
of the private key and will be the only server on the Internet (with the
possible exception of the other machines in its cluster) to have one.
How can you ensure that the remote server has the private key in your TLS
implementation? Simple! Your TLS library delivers data encrypted with the
public key across the wire and requests that the remote server produce a
checksum proving that the data was properly decrypted with the secret key.
Your TLS stack should also consider whether the remote certificate has
been forged. After all, anyone with access to the openssl command-line tool
(or any of a number of other tools) can create a certificate with a common
name of cn=www.google.com, cn=pypi.python.org, or whatever they like.

Why would you put your faith in such a claim? Your TLS session should
preserve a list of certificate authorities (CAs) it trusts to validate Internet
host identities as a solution. By default, your operating system’s TLS library
or your web browser employs a few hundred certificates from around the
world that represent organisations that provide trusted site verification.
If you are not satisfied with the defaults or wish to use a private CA that
your company has generated for signing your own private host certificates
for free, you can always give your own CA list. When no external clients
are expected to connect and you only need to facilitate connections between
your internal services, this is a popular choice.
A signature is a mathematical mark made by a CA on a certificate to show
that it has been approved.
Before recognising that the certificate is legitimate, your TLS library will
check the signature against the public key of the relevant CA certificate.
TLS will check the data fields of the certificate after confirming that the
certificate’s body was submitted to and signed by the trusted third party.
There will be two types of fields that will be of particular importance. To
begin with, certificates include a notBefore date and a notAfter date to
bracket the time period in which they are valid, ensuring that certificates
associated with stolen private keys do not remain valid indefinitely.
Because your TLS stack checks these using your system clock, a poor or
incorrect clock can actually prevent you from communicating over TLS!
Second, the certificate’s common name should match the hostname you’re
trying to connect to—after all, if you’re trying to connect to
https://pypi.python.org, you’re not going to be impressed if the site
responds with a certificate for a completely different hostname!
A single certificate can be used for several hostnames. Modern certificates
can store additional names in their subjectAltName field to supplement the
single-value common name in the subject field. In addition, any of those
names can contain wildcards, such as *.python.org, which match several
hostnames instead than just one. Modern TLS algorithms will automatically
conduct such matching for you, and the Python ssl module can do so as
well.
Finally, the client and server TLS agents agree on a shared secret key and
cypher to encrypt the data that goes through the connection. This is the last

https://pypi.python.org/

place where TLS can fail, because properly configured software will reject
any cypher or key length it deems insufficient. TLS can fail on two levels:
either the version of the TLS protocol that the other end wishes to use is too
hopelessly out-of-date and insecure, or the cyphers that the other end
provides are not regarded strong enough to trust.
Control is passed back to the application at each end once the cypher has
been agreed upon and both peers have created the keys, both for encrypting
and signing each block of data. Each chunk of data they send is encrypted
with the encryption key, and the resulting block is signed with the signing
key to verify to the other end that it was generated by the other peer and not
by someone attempting a man-in-the-middle assault on the network. Data
can flow freely in both directions, exactly like on a normal TCP socket,
until TLS is off and the socket is closed or reverted to plain-text mode.
Because it makes all of the main decisions discussed earlier, you’ll learn
how to manipulate Python’s ssl library in the parts that follow. Please refer
to official references as well as sites such as Bruce Schneier’s books, the
Google Online Security blog, and blogs like Adam Langley’s for more
information. Hynek Schlawack’s “The Sorry State Of SSL” keynote from
PyCon 2014, which you can watch online, was quite useful to me. If more
recent TLS lectures have been presented at conferences by the time you
read this book, they may be an excellent source of up-to-date knowledge on
the ever-changing field of cryptography.

Producing Certificates
The certs directory also contains various certificates that are used in the
network playground (see Chapter 1), including those that you will use at the
command line in the examples in this chapter. All of the other certificates
have been signed by the ca.crt certificate, which is a small self-contained
certificate authority that you’ll instruct Python to trust when utilising the
other certificates with TLS.
In a nutshell, certificate creation usually starts with two pieces of data: one
generated by a human and the other by a machine. These are a textual
description of the entity indicated by the certificate and a private key that
has been carefully generated utilising the operating system’s real
randomness sources.

When prompted for the handwritten identity description, I normally save it
to a version-controlled file for future reference; however, other
administrators simply type the information into openssl when required.
Listing 6-1 shows the www.cnf file for the network playground’s
www.example.com web server, which was used to generate the certificate.

Listing 6-1:. The OpenSSL Command Line Configuration for an X.509
Certificate
[req]
prompt = no
distinguished_name = req_distinguished_name
[req_distinguished_name]
countryName = India
stateOrProvinceName = New Delhi
localityName = New Delhi
0.organizationName = Example from Bpbonline
organizationalUnitName = Network Programming in Python: The
Basics
commonName = www.example.com
emailAddress = root@example.com
[ssl_client]
basicConstraints = CA:FALSE
nsCertType = client
keyUsage = digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth

Remember that TLS will compare the commonName and any
subjectAltName elements (not present in this example) to the hostname to
determine whether it is talking to the correct host.
Today, experts disagree over the length and kind of private key that should
back up a certificate, with some administrators choosing RSA and others
Diffie-Hellman. Without getting into that issue, here is a sample command
line for establishing an RSA key with a key length that is currently regarded
acceptable:
$ openssl genrsa -out www.key 4096
Generating RSA private key, 4096 bit long modulus
..
..................

http://www.example.com/

.............++

.............++
e is 65537 (0x10001)

With these two components in place, the administrator can generate a
certificate-signing request (CSR) to send to a certificate authority, whether
it’s the administrator’s own or a third- party’s.
$ openssl req -new -key www.key -config www.cnf -out www.csr

If you want to understand how the openssl tool creates a private CA and
signs a CSR to build a www.crt file corresponding to the request generated
before, look at the Makefile. If you deal with a public certificate authority
instead, you might get your www.crt in an e-mail (don’t worry, the
certificate is designed to be public!) Alternatively, when the signed
certificate is ready, you can download it from your account on the
authority’s website. In any event, combining the certificate and secret key
into a single file for convenience is the final step to making your certificate
easy to use with Python. If the files were created in the standard PEM
format by the previous operations, combining them is as easy as using the
Unix “concatenate” command.
$ cat www.crt www.key > www.pem

The finished file should include a textual explanation of the certificate’s
contents, followed by the certificate itself, and finally the private key. Use
caution while working with this file! If either www.key or the PEM file
www.pem holding the private key was leaked or made available to a third
party, the third party may mimic your service for the months or years until
the key expires.
More sophisticated configurations exist than a CA that signs certificates for
server use directly. Some firms, for example, want their servers to only use
certificates that are valid for a few days or weeks before expiring. If a
server is hacked and the private key is stolen, the damage is reduced.
Instead of having to contact (and pay) the CA organisation for a
replacement every few days, such an organisation can have the CA sign a
longer-lived intermediate certificate, whose private key the organisation
keeps secret and uses to sign the user-visible certificates that are actually
put on servers. The resulting certificate chain, or chain of trust, combines
the flexibility of having your own CA (because you can sign new

certificates whenever you want) with the convenience of using a publicly
recognised CA (because you don’t have to install a custom CA certificate in
every browser or client that wants to communicate with you). Client
software should have no trouble confirming their identity if your TLS-
powered server gives them with both their own server certificate and the
intermediate certificate that makes the cryptographic link back to the CA
certificate that they trust.
If you’re entrusted with establishing your organization’s cryptographic
identity and services, consult books or material on certificate signing.

TLS Offloading
Before I teach you how to utilise TLS from Python—especially if you’re
about to develop a server—I should point out that many experts would
question why you’d want to use encryption in your Python application in
the first place. After all, several tools exist that have carefully implemented
TLS and can handle client connections on your behalf as well as delivering
unencrypted data to your application if it is executed on a different port.
It may be easier to upgrade and tune a separate daemon or service that
provides TLS termination for your Python application than the combination
of your own server code, Python, and the underlying OpenSSL library.
Furthermore, a third-party tool will frequently expose TLS functionality
that the Python ssl module does not yet allow you to customise, even under
Python 3.4. For example, using ECDSA elliptic curve signatures or fine-
tuning session renegotiation appears to be unfeasible with the vanilla ssl
module at the moment. Renegotiation of sessions is a particularly important
problem. It can greatly lower the CPU cost of providing TLS, but if
configured incorrectly, it can jeopardise your ability to guarantee Perfect
Forward Security (see the section “Hand-Picked Ciphers and Perfect
Forward Security”). “How to botch TLS forward secrecy,” a 2013 blog
entry at https://www.imperialviolet.org/2013/06/27/botchingpfs.html, is
still one of the better introductions to the topic. Third-party daemons that
provide TLS termination include front-end HTTPS servers. Because the
HTTPS standard stipulates that the client and server should initially
negotiate encryption before any protocol-specific messages transit across
the channel, it is particularly simple for a third-party tool to wrap HTTP.
TLS can disappear from your Python code and into the surrounding

https://www.imperialviolet.org/2013/06/27/botchingpfs.html

infrastructure, whether you deploy Apache, nginx, or another reverse proxy
in front of your Python web service as an extra layer of defence or instead
subscribe to a content delivery network like Fastly that tunnels requests
through to your own servers.
However, even if you create your own raw socket protocol for which no
third-party tools are accessible, If you decide to outsource TLS to another
tool, you can probably just skim the rest of this chapter (to familiarise
yourself with the knobs you’ll be searching for) before diving into the tool’s
documentation. It is that tool, not Python, that will load your certificate and
private key, and it must be configured appropriately to give the amount of
security against weak cyphers that you require. The only concern is how
your preferred front end will inform your Python service of the remote IP
address and (if client certificates are used) the identity of each client that
has connected. Additional headers can be added to HTTP requests to
include information about the client. Extra information like the client IP
address will have to be prepended as extra bytes in advance of the incoming
data stream for more rudimentary technologies like stunnel or haproxy that
may not truly be speaking HTTP. In any case, the tool will provide the TLS
superpowers that will be demonstrated in the rest of this chapter using pure
Python sockets.

Default Contexts in Python 3.4
There are several open source TLS implementations available. Despite
multiple recent security incidents, the Python Standard Library chooses to
wrap the most popular, the OpenSSL library, which appears to be the best
option for most systems and languages. Some Python distributions include
their own version of OpenSSL, while others just wrap the OpenSSL
included with your operating system. ssl is the old and nostalgic moniker
for the Standard Library module. Although this book will concentrate on
ssl, other cryptography projects in the Python community are active,
including the pyOpenSSL project, which exposes much more of the
underlying library’s API. Python 3.4 makes it more easier for Python
applications to use TLS properly than previous versions of Python, thanks
to the addition of the ssl.create default context() function. It’s a great
illustration of the kind of “opinionated API” that the majority of customers
require. We owe it to Christian Heimes and Donald Stufft to introduce the

concept of a default context to the Standard Library, as well as to advocate
for strong and relevant feedback. Because they had already promised not to
destroy backward compatibility when new versions of Python came out, the
various procedures that the ssl module offers for setting up TLS
connections are required to continue with older and less secure defaults.
However, if the TLS cypher or key length you’ve been using is now
considered insecure, create default context() is more than willing to throw
an exception the next time you upgrade Python.
By abandoning the promise that you can upgrade Python without changing
the behaviour of your application, create default context() can carefully
select the cyphers it will support, freeing you from the need to become a
TLS expert and read security blogs if you simply follow its advice and keep
Python updated on your machine. After each upgrade, retest your
applications to ensure that they can still connect to their TLS peers. If an
application is unsuccessful,

Listing 6-2. In Python 3.4 or newer, securing a socket with TLS for both
the client and the server
#!/usr/bin/env python3
Network Programming in Python: The Basics
Simple TLS client and server using safe configuration
defaults
import argparse, socket, ssl
def client(host, port, cafile=None):
purpose = ssl.Purpose.SERVER_AUTH
context = ssl.create_default_context(purpose, cafile=cafile)
raw_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
raw_sock.connect((host, port))
print(‘Connected to host {!r} and port {}’.format(host,
port))
ssl_sock = context.wrap_socket(raw_sock,
server_hostname=host)
while True:
data = ssl_sock.recv(1024)
if not data:
break
print(repr(data))

def server(host, port, certfile, cafile=None):
purpose = ssl.Purpose.CLIENT_AUTH
context = ssl.create_default_context(purpose, cafile=cafile)
context.load_cert_chain(certfile)
listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
listener.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR,
1)
listener.bind((host, port))
listener.listen(1)
print(‘Listening at interface {!r} and port {}’.format(host,
port))
raw_sock, address = listener.accept()
print(‘Connection from host {!r} and port
{}’.format(*address))
ssl_sock = context.wrap_socket(raw_sock, server_side=True)
ssl_sock.sendall(‘Simple is better than
complex.’.encode(‘ascii’))
ssl_sock.close()

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Safe TLS client
and server’)
parser.add_argument(‘host’, help=’hostname or IP address’)
parser.add_argument(‘port’, type=int, help=’TCP port number’)
parser.add_argument(‘-a’, metavar=’cafile’, default=None,
help=’authority: path to CA certificate PEM file’)
parser.add_argument(‘-s’, metavar=’certfile’, default=None,
help=’run as server: path to server PEM file’)
args = parser.parse_args()
if args.s:
server(args.host, args.port, args.s, args.a)
else:
client(args.host, args.port, args.a)

The listing shows that there are only three steps to fastening a socket. To
begin, construct a TLS context object that contains all of your certificate
validation and cypher options. Second, use the wrap_ socket() method of
the context to allow the OpenSSL library control your TCP connection,
exchange the proper pleasantries with the other end, and establish an

encrypted channel. Finally, use the ssl sock that was returned to you for all
subsequent communication so that the TLS layer may always encrypt your
data before it reaches the wire. This wrapper, you’ll see, has all of the same
functions as a typical socket, including send(), recv(), and close(), which
you learned about in Chapter 3 from your experience with normal TCP
sockets.
Several options in the new context that is returned are affected by whether
you are building context for a client trying to verify the server to which it
connects (Purpose.SERVER AUTH) or a server requiring to accept client
connections (Purpose.CLIENT AUTH). The logic behind having two
different sets of settings is that you want TLS clients to be a little more
forgiving of older cyphers because they will occasionally find themselves
connecting to servers that are outside of your control and may be a little
out-of-date. They believe, however, that you will want your own servers to
use contemporary and secure cyphers! While the settings picked by create
default context() will change with each new version of Python, below are
some examples from Python 3.4:

Because create default context() sets the protocol to PROTOCOL
SSLv23 when constructing your new SSLContext object, both your
client and server will be willing to negotiate the TLS version that is
spoken.
Both your client and server will refuse to communicate via the
obsolete SSLv2 and SSLv3 protocols due to documented flaws in each
of them. Instead, they’ll demand that the peer with whom they’re
conversing use a dialect that’s at least as modern as TLSv1. (The most
common client that this choice eliminates is Internet Explorer 6 on
Windows XP—a combination that is so outdated that Microsoft no
longer supports it.)
The first difference between the client and server settings is that TLS
compression is disabled due to the assaults that it allows. Because the
majority of TLS communications on the Internet involve a client (such
as a standard web browser) communicating with a server (such as
PyPI, Google, or your bank) that has a valid and signed certificate,

Another distinction between clients and servers is the cyphers they use. The
client settings allow for a wider range of cyphers, including the outdated

RC4 stream encryption. The server settings are substantially tougher, with a
strong preference for newer cyphers that enable Perfect Forward Security
(PFS), ensuring that a compromised server key—whether obtained by
criminals or disclosed by court order— does not result in the disclosure of
prior chats.
The previous list was simple to put together: all I had to do was open ssl.py
in the Standard Library and study the source code of create default context()
to figure out what choices it makes. You can do it yourself, particularly as
new Python versions are released and the preceding list becomes outdated.
If you’re curious, the ssl.py source code provides the raw list of cyphers for
both client and server operations, which are currently labelled _DEFAULT
CIPHERS and _RESTRICTED SERVER CIPHERS. To learn what the
choices in each string signify, visit the most recent OpenSSL manual.
When constructing the context in Listing 6-2, the cafile option specifies
which certificate authority your script will trust when verifying a remote
certificate. Create default context() will execute the load default_ certs()
method of your new context before returning it if its value is None, which is
the default if you don’t specify the cafile keyword. It should also be
adequate to verify public web sites and other services that have purchased a
certificate from a reputable public certificate authority. If cafile is a
filename instead of a string, no certificates from the operating system are
imported, and only CA certificates from that file are trusted to validate the
remote end of your TLS connection. (Note that if you build the context with
cafile set to None and then run load verify locations() to install any
additional certificates, you can make both types of certificates available.)
Finally, wrap socket() in Listing 6-2 provides two important options: one
for the server and the other for the client. Because one of the two ends must
assume the server’s obligations or the negotiation will fail with an error, the
server is provided the option server side=True. The client call requires
further information: the name of the host to which you believe you
connected with connect(), so that it may be compared to the subject fields
of the server’s certificate. As long as you constantly provide the server
hostname keyword to wrap socket(), as shown in the listing, this critical
check is completed automatically.

Wrapping Sockets in Different Ways

All of the scripts in this chapter show how to use the ssl module to achieve
TLS by creating a configured SSLContext object that describes your
security requirements, making the client-server connection yourself with a
plain socket, and then calling the context’s wrap socket() method to perform
actual TLS negotiation. This pattern is used in all of my examples since it is
the most reliable, efficient, and versatile way to access the module’s API.
It’s the pattern that you can always utilise successfully in a Python
programme, and by doing so, you’ll be able to write clients and servers that
are easy to read since their approaches are consistent, and their code is easy
to compare to the examples here and to each other. However, the ssl module
in the Standard Library includes a few other shortcuts that you might see in
other scripts and that I should mention. Let me describe each of them, as
well as their flaws.
The first option you’ll come across is calling the module-level function
ssl.wrap socket() without previously generating a context. This is especially
common in older scripts because it was the only way to establish a TLS
connection prior to the addition of context objects in Python 3.2! There are
at least four flaws in it.

It’s inefficient because it creates a new context object with settings
every time it’s invoked. Instead, by generating and setting your own
context, you can reuse it multiple times while only incurring the cost
of doing so once.
It lacks the flexibility of a true context—despite offering nine (!)
distinct optional keyword arguments in a desperate attempt to provide
enough knobs and buttons, it still manages to leave out features like
allowing you to define the cyphers you want to employ. Because of
the promise of backward compatibility with Python versions that are
now a decade old, it is dreadfully liberal in terms of the weak cyphers
that it will allow. • Finally, it fails to provide real security because it
doesn’t check hostnames! You won’t know whether the certificate
given by your peer is even for the same hostname to which you think
you’re connected until you remember to execute match hostname()
after a “successful” connection.

For all of these reasons, you should avoid using ssl.wrap socket() and be
prepared to transition away from it in any existing code. Instead, follow the

guidelines outlined in Listing 6-2. Wrapping a socket before it is connected,
either a client socket before it runs connect() or a server socket before it
runs accept(), is another common shortcut ().The wrapped socket can’t
really negotiate TLS right away in either situation, so it’ll have to wait till
the socket is connected to do so. Obviously, this will only work for
protocols that perform TLS activation as the initial step after connecting,
such as HTTPS. Because a protocol like SMTP requires cleartext to begin
the interaction, a keyword option do handshake on connect is provided
when wrapping, which you may set to False if you want to delay TLS
negotiation until later with the socket’s do handshake() method. True,
prewrapping a socket does not reduce security by itself, but I advise against
it for the following three reasons involving code readability:

For starters, it places the wrapping function somewhere other than
where the actual TLS negotiation occurs, which can obscure the fact
that the TLS protocol is even involved from someone reading your
final connect() or accept() call.
Connect() and accept() will now be able to fail not only with socket or
DNS exceptions, but also with TLS failures if the negotiation goes
wrong, which is related to the prior issue. Any try...except clause that
wraps those calls will now have to worry about two distinct types of
errors, as two distinct procedures will be buried beneath the hood of a
single method call.
Finally, you’ll notice that you now have an SSLSocket object that may
or may not be performing any encryption. The so-called SSLSocket
will only provide genuine encryption once a connection is established
or when an explicit do handshake() is invoked (if autonegotiation is
disabled). The method described in the programme listings in this
book, on the other hand, transitions to an SSLSocket only when
encryption is enabled, resulting in a significantly more meaningful
link between the class of your current socket object and the status of
the underlying connection.

Prewrapping has only been useful in one situation: when trying to use an
old, naive library that only allows cleartext communication. You can add
TLS protection to the protocol without it even knowing by providing a
prewrapped socket and setting the do handshake on_ connect keyword
argument to its default value of True. This is a unique situation that should

be addressed (if at all possible) by making the underlying library TLS-
aware and capable of accepting a TLS context as an argument.

Ciphers chosen by hand and perfect forward
security
If you’re concerned about data security, you might wish to use the create
default context() function to specify the exact cyphers that OpenSSL can
use rather than relying on the defaults.
As the field of encryption develops, there will undoubtedly be issues, flaws,
and solutions that we have yet to imagine. However, when this book goes to
press, one crucial concern is Perfect Forward Security (PFS), or whether
someone who acquires (or cracks) an old private key of yours in the future
will be able to read past TLS chats that they captured and saved for future
decryption. The most popular cyphers nowadays are those that defend
against this risk by encrypting each new socket using an ephemeral
(temporary) key. One of the most common reasons for wanting to hand-
specify the characteristics of your context object is to ensure PFS.
Although the ssl module’s default contexts do not require a PFS-capable
cypher, if both your client and server are using recent-enough versions of
OpenSSL, you will almost certainly get one. For example, if I run the safe
tls.py script from Listing 6-2 in server mode and connect to it using the test
tls.py script from Listing 6-4, then (given my laptop, operating system, and
other factors),
$ python3.4 test_tls.py -a ca.crt localhost 1060
...
Cipher chosen for this connection... ECDHE-RSA-AES256-GCM-
SHA384
Cipher defined in TLS version....... TLSv1/SSLv3
Cipher key has this many bits....... 256
Compression algorithm in use........ none

As a result, Python will often make smart decisions without you having to
specify them. However, if you want to ensure that a specific protocol
version or algorithm is used, simply restrict the context to your preferences.
For example, when this book is being published, a good server setup (for a

server that will not expect clients to give TLS certificates and hence can use
CERT NONE as its verification mode) is:
context = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
context.verify_mode = ssl.CERT_NONE
context.options |= ssl.OP_CIPHER_SERVER_PREFERENCE # choose
our favorite cipher
context.options |= ssl.OP_NO_COMPRESSION # avoid CRIME exploit
context.options |= ssl.OP_SINGLE_DH_USE # for PFS
context.options |= ssl.OP_SINGLE_ECDH_USE # for PFS
context.set_ciphers(‘ECDH+AES128 ‘) # choose over AES256, says
Schneier

These lines of code can be substituted into a programme like Listing 6-2
anytime a server socket is formed.
Only a few explicit parameters have been used to specify the specific TLS
version and cypher. Any client attempting to connect that does not support
these options will fail instead of establishing a successful connection. A
client trying a connection with an even slightly older version of TLS (like
1.1) or a slightly weaker cypher (like 3DES) will be refused if the previous
code is added to Listing 6-3 in place of the default context.
$ python3.4 test_tls.py -p TLSv1_1 -a ca.crt localhost 1060
Address we want to talk to.......... (‘localhost’, 1060)
Traceback (most recent call last):
...

ssl.SSLError: [SSL: TLSV1_ALERT_PROTOCOL_VERSION] tlsv1 alert
protocol version (_ssl.c:598)
$ python3.4 test_tls.py -C ‘ECDH+3DES’ -a ca.crt localhost
1060
Address we want to talk to.......... (‘localhost’, 1060)
Traceback (most recent call last):
...

ssl.SSLError: [SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert
handshake failure (_ssl.c:598)

In each of these circumstances, the server will additionally raise a Python
exception, analysing the fault from its own perspective. As a result, if the
connection succeeds, your data will be protected using the latest and most
capable version of TLS (1.2) and one of the best cyphers available. The

problem with switching from the ssl module’s default contexts to hand-
picked settings like this is that you must not only do the research to
determine your needs and choose a TLS version and cypher when you first
write an application, but you must also stay up-to-date in case your choices
are later discovered to be vulnerable to a new exploit. Combining TLS 1.2
with an elliptic curve Diffie–Hellman appears to be in excellent shape, as
least as far as this book is concerned. However, the option will most likely
appear antiquated or even quaint in the future. Alternatively, you could
appear utterly insecure. Will you be able to pick this up quickly and replace
your manual decisions in your software projects with superior ones?
You’ll be locked between these two possibilities unless create default
context() gains an option that allows you to insist on Perfect Forward
Security. Either trust the default context and accept that some clients (or
servers) with whom you communicate may not be protected by PFS, or lock
down the cypher and stay current with cryptography news. Keep in mind
that PFS is only as good as your process for frequently discarding the
server’s session state or session ticket key. Simply restarting your server
process every evening should ensure that new keys are issued, but if you
have a full fleet of servers to deploy and want them to be able to handle a
pool of TLS clients that take advantage of session restart, do more research.
(However, in this case—wanting an entire cluster’s session-restart keys to
be coordinated without jeopardising PFS—it might make more sense to
look at tools other than Python to handle TLS termination!) Last but not
least, if you’re developing, or at least configuring, both the client and
server, as you may be if you’re setting up encrypted communications within
your own machine room or between your own servers, locking down the
cypher option is significantly easier. When other pieces of software are
involved, a less flexible cypher set may make it more difficult for others to
interact with your services, especially if their tools use different TLS
implementations. If you do limit things to just a few options, make sure to
explain them clearly and publicly for individuals who create and setup the
clients so they can figure out why older clients aren’t connecting.

Support for TLS Protocol
TLS support has now been implemented to the majority of frequently used
Internet protocols. When using these protocols from a Python Standard

Library module or a third-party library, the key feature to look for is how to
specify the TLS cypher and parameters to prevent peers from connecting
with weak protocol versions, weak cyphers, or weakening features like
compression. This setup can take the form of library-specific API calls or
simply allowing you to send an SSLContext object along with your
configuration options.The Python Standard Library includes the following
TLS-aware protocols:

http.client: You can use the constructor’s context keyword to pass in
an SSLContext with your own settings when creating an
HTTPSConnection object (see Chapter 9). Unfortunately, neither
urllib.request nor the Requests library described in Chapter 9 presently
take an SSLContext argument in their APIs.
smtplib: You can use the constructor’s context keyword to pass in an
SSLContext with your own settings when creating an SMTP SSL
object (see Chapter 13). If you instead build a plain SMTP object and
then call its starttls() method later, the context parameter is passed to
that method call.
poplib: You can use the context keyword in the function Object() {
[native code] } of a POP3 SSL object (see Chapter 14) to pass in an
SSLContext with your own settings. Instead, if you build a normal
POP3 object and then call its stls() method later, the context parameter
will be passed to that method call.
imaplib: You can use the ssl context keyword in the function Object()
{ [native code] } of an IMAP4 SSL object (see Chapter 15) to pass in
an SSLContext with your own settings. If you instead build a simple
IMAP4 object and then call its starttls() method later, the ssl context
parameter will be passed to that method call.
ftplib: You can use the context keyword in the function Object() {
[native code] } of an FTP TLS object (see Chapter 17) to send in an
SSLContext with your own settings. Before you can turn on
encryption, the first line or two of the FTP discussion will always flow
in the clear (such as the “220” welcome message, which often reveals
the server hostname). Before the login() method provides a username
and password, an FTP TLS object will automatically enable
encryption. If you are not logging in to the remote server but still want

encryption enabled, you must manually execute the auth() method as
the initial action after connecting.
nntplib: While the NNTP network news (Usenet) protocol is not
discussed in this book, it can be protected as well. When creating an
NNTP SSL, you can use the ssl context keyword in the function
Object() { [native code] } to pass in an SSLContext with your own
settings. If you instead build a plain NNTP object and then call its
starttls() method later, the context parameter will be passed to that
method call.

It’s worth noting that a common theme running through nearly all of these
protocols is that TLS can be used to expand an older plain-text standard in
one of two ways. One option is to introduce a new command to the protocol
that enables for a TLS upgrade in the middle of a discussion. The other
option is for the Internet standard to designate a second well-defined TCP
port number for the TLS-protected version of the protocol, in which case
TLS negotiation can happen automatically without the need to ask. Most of
the previously stated protocols offer both options, but HTTP only supports
the second because it is designed to be stateless.
If you’re connecting to a server set up by another team or organisation that
supports the TLS version of one of the previous protocols, you’ll need to
test (in the absence of any documentation) to see if they opened the
protocol’s new TLS port or just support TLS upgrades on top of the old
plain-text protocol. If you’re not using the Standard Library for network
communication and instead utilising a third-party package that you learned
about in this book or elsewhere, you’ll want to look out how to provide
your own SSLContext in its documentation. If no mechanism is provided—
and, as I type, even popular third-party libraries for Python 3.4 and newer
do not typically provide this ability—you will have to experiment with
whatever knobs and settings the package does provide and test the result
(perhaps using Listing 6-4, introduced in the next section) to see if the
third-party library guarantees a strong enough protocol and cypher for the
privacy required by your data.

Details of Studying

Listing 6-3 provides a Python 3.4 script that creates an encrypted
connection and then reports on its features to help you learn more about the
TLS protocol version and cypher choices that your clients and servers can
make. To do so, it makes use of many new capabilities of the SSLSocket
object in the Standard Library’s ssl module, which now allow Python
scripts to inspect the status of their OpenSSL-powered connections to
determine how they’re configured.
The following are the strategies it use to complete its reporting:

getpeercert() is a function that returns a list of peer certificates. This
method returns a Python dictionary of attributes selected from the
X.509 certificate of the peer to which the TLS session is linked, a
long-standing feature of SSLSocket that was accessible in multiple
previous Python versions. However, subsequent Python versions have
increased the number of certificate features available.
cypher(): Returns the name of the encryption that was finally agreed
upon by OpenSSL and the peer’s TLS implementation and is currently
in use across the connection.
compression(): Returns the name of the compression algorithm being
used, or None in Python.

The script in Listing 6-3 also tries a little of voodoo with ctypes in a
desperate attempt to understand the TLS protocol in use (which will ideally
be a native feature of the ssl module by the time Python 3.5 is published) in
order to make its reporting as complete as feasible. Listing 6-3 allows you
to connect to a client or server that you have built and understand what
cyphers and protocols it will or will not negotiate by putting these
components together.

Listing 6-3. Connect to Any TLS Endpoint and Report the Cipher
Negotiated
#!/usr/bin/env python3
Network Programming in Python: The Basics
Attempt a TLS connection and, if successful, report its
properties
import argparse, socket, ssl, sys, textwrap
import ctypes

from pprint import pprint
def open_tls(context, address, server=False):
raw_sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
if server:
raw_sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR,
1)
raw_sock.bind(address)
raw_sock.listen(1)
say(‘Interface where we are listening’, address)
raw_client_sock, address = raw_sock.accept()
say(‘Client has connected from address’, address)
return context.wrap_socket(raw_client_sock, server_side=True)
else:
say(‘Address we want to talk to’, address)
raw_sock.connect(address)
return context.wrap_socket(raw_sock)

def describe(ssl_sock, hostname, server=False, debug=False):
cert = ssl_sock.getpeercert()
if cert is None:
say(‘Peer certificate’, ‘none’)
else:
say(‘Peer certificate’, ‘provided’)
subject = cert.get(‘subject’, [])
names = [name for names in subject for (key, name) in names
if key == ‘commonName’]
if ‘subjectAltName’ in cert:
names.extend(name for (key, name) in cert[‘subjectAltName’]
if key == ‘DNS’)
say(‘Name(s) on peer certificate’, *names or [‘none’])
if (not server) and names:
try:
ssl.match_hostname(cert, hostname)
except ssl.CertificateError as e:
message = str(e)
else:
message = ‘Yes’
say(‘Whether name(s) match the hostname’, message)

for category, count in
sorted(context.cert_store_stats().items()):
say(‘Certificates loaded of type {}’.format(category), count)
try:
protocol_version = SSL_get_version(ssl_sock)
except Exception:
if debug:
raise
else:
say(‘Protocol version negotiated’, protocol_version)
cipher, version, bits = ssl_sock.cipher()
compression = ssl_sock.compression()
say(‘Cipher chosen for this connection’, cipher)
say(‘Cipher defined in TLS version’, version)
say(‘Cipher key has this many bits’, bits)
say(‘Compression algorithm in use’, compression or ‘none’)
return cert

class PySSLSocket(ctypes.Structure):
“””The first few fields of a PySSLSocket (see Python’s
Modules/_ssl.c).”””
fields = [(‘ob_refcnt’, ctypes.c_ulong), (‘ob_type’,
ctypes.c_void_p),
(‘Socket’, ctypes.c_void_p), (‘ssl’, ctypes.c_void_p)]

def SSL_get_version(ssl_sock):
“””Reach behind the scenes for a socket’s TLS protocol
version.”””
lib = ctypes.CDLL(ssl._ssl.__file__)

lib.SSL_get_version.restype = ctypes.c_char_p
address = id(ssl_sock._sslobj)
struct = ctypes.cast(address,
ctypes.POINTER(PySSLSocket)).contents
version_bytestring = lib.SSL_get_version(struct.ssl)
return version_bytestring.decode(‘ascii’)

def lookup(prefix, name):
if not name.startswith(prefix):
name = prefix + name
try:

return getattr(ssl, name)
except AttributeError:
matching_names = (s for s in dir(ssl) if
s.startswith(prefix))
message = ‘Error: {!r} is not one of the available names:\n
{}’.format(
name, ‘ ‘.join(sorted(matching_names)))
print(fill(message), file=sys.stderr)
sys.exit(2)

def say(title, *words):
print(fill(title.ljust(36, ‘.’) + ‘ ‘ + ‘ ‘.join(str(w) for w
in words)))

def fill(text):
return textwrap.fill(text, subsequent_indent=’ ‘,
break_long_words=False, break_on_hyphens=False)

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Protect a
socket with TLS’)
parser.add_argument(‘host’, help=’hostname or IP address’)
parser.add_argument(‘port’, type=int, help=’TCP port number’)
parser.add_argument(‘-a’, metavar=’cafile’, default=None,
help=’authority: path to CA certificate PEM file’)
parser.add_argument(‘-c’, metavar=’certfile’, default=None,
help=’path to PEM file with client certificate’)
parser.add_argument(‘-C’, metavar=’ciphers’, default=’ALL’,
help=’list of ciphers, formatted per OpenSSL’)
parser.add_argument(‘-p’, metavar=’PROTOCOL’,
default=’SSLv23’,
help=’protocol version (default: “SSLv23”)’)
parser.add_argument(‘-s’, metavar=’certfile’, default=None,
help=’run as server: path to certificate PEM file’)
parser.add_argument(‘-d’, action=’store_true’, default=False,
help=’debug mode: do not hide “ctypes” exceptions’)
parser.add_argument(‘-v’, action=’store_true’, default=False,
help=’verbose: print out remote certificate’)
args = parser.parse_args()
address = (args.host, args.port)

protocol = lookup(‘PROTOCOL_’, args.p)
context = ssl.SSLContext(protocol)
context.set_ciphers(args.C)
context.check_hostname = False
if (args.s is not None) and (args.c is not None):
parser.error(‘you cannot specify both -c and -s’)
elif args.s is not None:
context.verify_mode = ssl.CERT_OPTIONAL
purpose = ssl.Purpose.CLIENT_AUTH
context.load_cert_chain(args.s)
else:
context.verify_mode = ssl.CERT_REQUIRED
purpose = ssl.Purpose.SERVER_AUTH
if args.c is not None:
context.load_cert_chain(args.c)
if args.a is None:
context.load_default_certs(purpose)
else:
context.load_verify_locations(args.a)
print()
ssl_sock = open_tls(context, address, args.s)
cert = describe(ssl_sock, args.host, args.s, args.d)
print()
if args.v:
pprint(cert)

The normal –h help option is the best way to learn about the command-line
parameters offered by this tool. It tries to expose all of an SSLContext’s
primary features via command-line parameters so you can play with with
them and see how they effect negotiation. You can look at how the default
settings of a server using Python 3.4’s create default context() are stricter
than the settings of a client using it. Start the script from Listing 6-2 as a
server in one terminal window. I’ll assume you already have the certificate
files ca.crt and localhost.pem from the book’s source code repository’s
chapter06 directory.
$ /usr/bin/python3.4 safe_tls.py -s localhost.pem ‘’ 1060

This server welcomes connections utilising the most modern protocol
versions and cyphers; in fact, if given the chance, it will negotiate a strong

configuration with Perfect Forward Security enabled. Using only Python’s
defaults, see what occurs if you connect as indicated in Listing 6-3:
$ /usr/bin/python3.4 test_tls.py -a ca.crt localhost 1060
Address we want to talk to.......... (‘localhost’, 1060)
Peer certificate.................... provided
Name(s) on peer certificate......... localhost
Whether name(s) match the hostname.. Yes
Certificates loaded of type crl..... 0
Certificates loaded of type x509.... 1
Certificates loaded of type x509_ca. 0
Protocol version negotiated......... TLSv1.2
Cipher chosen for this connection... ECDHE-RSA-AES128-GCM-
SHA256
Cipher defined in TLS version....... TLSv1/SSLv3
Cipher key has this many bits....... 128
Compression algorithm in use........ none

The ECDHE-RSA-AES128-GCM-SHA256 combination is one of the
greatest that OpenSSL has to offer right now! The safe tls.py server, on the
other hand, will refuse to communicate with a client that only supports
Windows XP encryption levels. Restart the safe tls.py server and connect
with the following arguments this time:
$ /usr/bin/python3.4 test_tls.py -p SSLv3 -a ca.crt localhost
1060
Address we want to talk to.......... (‘localhost’, 1060)
Traceback (most recent call last):
...

ssl.SSLError: [SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert
handshake failure (_ssl.c:598)

The meticulous server settings offered by Python bluntly reject the obsolete
SSLv3 protocol. Even when used in conjunction with contemporary
protocols, old end-of-life cyphers such as RC4 will fail.
test tls.py /usr/bin/python3.4 -
localhost 1060 C ‘RC4’ -a ca.crt
(‘localhost’, 1060) is the address we wish to talk to.
(Last call) Traceback (most recent call):
...

ssl.SSLError: [SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert
handshake failure (_ssl.c:598)

However, when you put the “safe” script in the role of a client, its behaviour
changes dramatically. This is due to the theory, discussed earlier, that it is
the server’s responsibility to decide how secure the connection should be,
whereas client authors generally just want things to work if they can do so
without completely exposing the data. Remember that the safe server
refused to speak RC4 when tested previously. Examine what happens if you
use the tls safe.py client with RC4 instead. First, shut down any existing
servers and execute the test script as the server, with the cypher set to -C.
$ /usr/bin/python3.4 test_tls.py -C ‘RC4’ -s localhost.pem ‘’
1060
Interface where we are listening.... (‘’, 1060)

Then try connecting with the safe tls.py script, which utilises Python 3.4’s
default context, in a new terminal window.
$ /usr/bin/python3.4 safe_tls.py -a ca.crt localhost 1060

The connection is successful even while using the safe default context! You
can see that RC4 was selected as the streaming cypher in the server
window. You may confirm that RC4 is as low as the safe script is willing to
go by using the –C option with different strings. Ciphers or algorithms such
as MD5 will be rejected outright as being unsuitable for a client attempting
to ensure maximum compatibility with any server with which the user may
wish to communicate.
To learn more about creating a custom protocol and cypher, consult the ssl
module documentation and then the official OpenSSL documentation. If
your system supports it, you can use the native OpenSSL command line to
print out all of the cyphers that match a given cypher string—the same text
that you could give to Listing 6-3 with the –C option or specify with the set
cipher() method in your own code. Additionally, when cryptography
advances and OpenSSL on your system is upgraded, the command line will
allow you to evaluate how various cypher rules modify their effect over
time. For the time being, here are the cyphers that match the
ECDH+AES128 cypher string on the Ubuntu laptop on which I am typing
this:
$ openssl ciphers -v ‘ECDH+AES128’

ECDHE-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=RSA
Enc=AESGCM(128) Mac=AEAD
ECDHE-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA
Enc=AESGCM(128) Mac=AEAD
ECDHE-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=RSA Enc=AES(128)
Mac=SHA256
ECDHE-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH Au=ECDSA
Enc=AES(128) Mac=SHA256
ECDHE-RSA-AES128-SHA SSLv3 Kx=ECDH Au=RSA Enc=AES(128)
Mac=SHA1
ECDHE-ECDSA-AES128-SHA SSLv3 Kx=ECDH Au=ECDSA Enc=AES(128)
Mac=SHA1
AECDH-AES128-SHA SSLv3 Kx=ECDH Au=None Enc=AES(128) Mac=SHA1
ECDH-RSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH/RSA Au=ECDH
Enc=AESGCM(128) Mac=AEAD
ECDH-ECDSA-AES128-GCM-SHA256 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH
Enc=AESGCM(128) Mac=AEAD
ECDH-RSA-AES128-SHA256 TLSv1.2 Kx=ECDH/RSA Au=ECDH
Enc=AES(128) Mac=SHA256
ECDH-ECDSA-AES128-SHA256 TLSv1.2 Kx=ECDH/ECDSA Au=ECDH
Enc=AES(128) Mac=SHA256
ECDH-RSA-AES128-SHA SSLv3 Kx=ECDH/RSA Au=ECDH Enc=AES(128)
Mac=SHA1
ECDH-ECDSA-AES128-SHA SSLv3 Kx=ECDH/ECDSA Au=ECDH Enc=AES(128)
Mac=SHA1

Under the setting set_ cipher(‘ECDH+AES128’), the OpenSSL library will
accept any of these combinations. Again, if at all feasible, use the default
context; otherwise, test the exact client and server you intend to use,
attempting to select one or two strong cyphers that they both support.
However, if you find yourself doing more exploring and troubleshooting
than that, I hope Listing 6-4 proves to be a valuable tool in narrowing down
OpenSSL’s behaviour. When you have a chance, download a new version of
Listing 6-4 from the URL in the remark at the top of the page, as the
version in the book will become out-of-date;

Conclusion

This chapter covers a subject on which few people are fully knowledgeable:
the use of cryptography to safeguard data in transit via a TCP socket, with a
focus on Python’s TLS protocol (formerly known as SSL).
In a normal TLS transaction, the client asks the server for a certificate,
which is a digital document that verifies an individual’s identity. It must be
signed by a trusted authority by both the client and the server, and it must
include a public key, which the server must then show it has a copy of. The
client should double-check that the certificate’s identity matches the
hostname it believes it is connected to. Finally, the client and server agree
on cypher, compression, and key parameters, which are then used to
safeguard data flowing in both directions across the socket.
Many administrators don’t bother to support TLS in their applications at all.
Instead, they conceal the apps behind industrial-strength front ends like
Apache, nginx, or HAProxy, which can handle TLS for them. Instead of
implementing TLS in their own application, services that have content
delivery networks in front of them must outsource TLS responsibility.
Though there are third-party libraries that can execute TLS in Python, the
language’s built-in capabilities come from the Standard Library’s
OpenSSL-powered ssl module. Basic encrypted channels can be set up with
merely a server certificate if ssl is available and running properly on your
operating system and version of Python.
Create a “context” object, open a connection, and then call the context’s
wrap socket() method to hand over control of the connection to the TLS
protocol. Python applications written for Python 3.4 and newer (I strongly
recommend using at least version 3.4 if your application is going to do its
own TLS) will generally follow the pattern of creating a “context” object,
opening a connection, and then calling the context’s wrap socket() method
to hand over The context-connect-wrap pattern is the most ubiquitous and
versatile, despite the fact that the ssl module provides a few of shortcut
functions that you’ll notice in older programmes.
Many Python clients and servers can simply accept the default “context”
object returned by ssl.create default context(), which tries to make servers
slightly strict in the settings that they will accept while making clients
slightly lenient so that they can connect to servers that only have older
versions of TLS available. Other Python applications will wish to create
their own SSLContext objects to customise the protocol and cypher to their

needs. In either event, you can use either the test script from this chapter or
another TLS tool to investigate the behaviours that occur from the settings.
The Standard Library supports a number of protocols that can be protected
with TLS if desired, the majority of which are covered in the book’s later
chapters. If you can give an SSLContext object, they will all work. Because
Python 3.4 was only recently published, and most Python programmers are
still using Python 2, third-party libraries currently provide inadequate
support for contexts. Both circumstances should, in theory, improve over
time.
Once you’ve implemented TLS in your application, it’s always a good idea
to put it through its paces with tools that will try a variety of connections
with changing parameters. Outside of Python, there are third-party tools and
online sites for testing TLS clients and servers, and the tool described in
Listing 6-4 can be used with Python 3.4 directly on your own system if you
want to experiment with different OpenSSL settings to see how it negotiates
and acts.

CHAPTER 7
Architecture of the Server

The author of a network service has two difficulties. The first is the
fundamental difficulty of building code that will appropriately respond to
incoming requests and craft acceptable answers. The second task is to
embed this network code in a Windows service or a Unix daemon that starts
automatically when the system boots, logs its activity to a persistent store,
raises an alert if it can’t connect to its database or back-end data store, and
either completely protects itself against all possible failure modes or can be
quickly restarted if it fails.
The first of these two challenges is the topic of this work. The second
challenge, keeping a process running on your operating system of choice, is
not only a topic worthy of a whole book, but it is also one that would take
this book far away from its core theme of network programming. As a
result, only one portion of this chapter will be dedicated to introducing the
idea of deployment before going on to the main issue of how network
servers might be created as software.
The way we deal with network servers will naturally fall into three
categories. I’ll start with a simple single-threaded server, comparable to the
UDP and TCP servers discussed in Chapters 2 and 3, and concentrate on its
drawbacks: It can only serve one client at a time, making any other clients
wait, and it will almost certainly keep the system CPU almost fully idle
even when talking to that client. Once you’ve grasped the problem, you’ll
look at the two competing solutions: duplicating the single-threaded server
across several threads or processes, or taking the multiplexing responsibility
away from the operating system and performing it yourself using
asynchronous network activities.

Structure
A Few Remarks on Deployment

A Basic Protocol
A single-threaded server.
Multiprocess and Threaded Servers
The SocketServer Framework of the Past
Async Servers
Callback-Style asyncio
Coroutine-Style asyncio
The asyncore Legacy Module
The Best of Both Worlds
Under the Influence of inetd
Conclusion

Objectives:
You will first implement each pattern from the ground up while studying
threaded versus asynchronous network programming, and then you will
look at frameworks that implement each pattern on your behalf. All of the
frameworks I show are from the Python Standard Library, but the text will
also mention prominent third-party competitors when they exist. The
majority of the scripts in this chapter can also be run in Python 2, but the
most advanced framework introduced—the new asyncio module—is only
available in Python 3, and it represents a significant step forward in
standardisation that can only be appreciated by programmers willing to
upgrade.

A Few Remarks on Deployment
A network service can be deployed to a single machine or a group of
machines. Clients can connect to a service that is hosted on a single
machine by entering its IP address. A service that runs on several machines
necessitates a more complex strategy. You may give each client the address
or hostname of a single instance of the service, such as one that is running
in the same machine room as the client, but this will not provide any
redundancy. Clients hardwired to its hostname or IP address will be unable
to connect if that instance of the service goes down.

When a service’s name is accessed, a more robust solution is to have your
DNS server report every IP address where the service is located, and
develop clients that fall back to the second or third IP address if the first one
fails.
The most scalable strategy in the market today is to put your services
behind a load balancer, which clients connect to directly and then directs
each incoming connection to an actual server behind it. When a server goes
down, the load balancer simply stops delivering requests to it until it comes
back up, making server failures almost undetectable to a large client base.
The largest Internet services combine these approaches: each machine room
has a load balancer and server farm, as well as a public DNS name that
delivers the IP addresses for the load balancer whose machine room appears
to be physically nearest to you.
Regardless of how basic or grandiose your service architecture is, you’ll
need a mechanism to deploy your Python server code to a physical or
virtual computer. When it comes to deployment, there are two schools of
thinking. The traditional approach is to include all of the capabilities of a
service in every server programme you write: double-forking to become a
Unix daemon (or registering as a Windows service), system-level logging, a
configuration file, and a way to start, stop, and restart it. You can do this by
using a third-party library that has previously handled these issues or by
starting from scratch with your own code.
Manifestos like The Twelve-Factor App have advocated a competing
approach. They advocate for a minimalist approach in which each service is
written as a regular programme that runs in the forefront and does not
attempt to become a daemon. Instead of expecting a system-wide
configuration file, such a software gets whatever configuration parameters
it needs from its environment (the sys.environ dictionary in Python). It
connects to any back-end services specified by the environment. It also
writes its logging messages to the screen, using a technique as simple as
Python’s own print() function. Open and listen at whatever port the
environment setup recommends to accept network requests.
Developers can easily test a service created in this simple approach by
running it from a shell prompt. However, by simply surrounding the
application with the appropriate scaffolding, it may be turned into a daemon
or system service, or deployed to a web-scale server farm. For example, the

scaffolding may get environment variable settings from a central
configuration service, link the application’s standard output and standard
error to a remote logging server, and restart the service if it fails or appears
to freeze. The programmer can be confident that the service code is
executing in production exactly as it is in development because the
programme itself is unaware of this and is simply outputting to standard
output as usual.
Large platform-as-a-service providers now host such apps for you, spinning
up dozens or even hundreds of clones of your application behind a single
public-facing domain name and TCP load balancer, then aggregating all of
the resulting logs for analysis. You can upload Python application code
directly to some providers. Others prefer that you bundle your code, a
Python interpreter, and any dependencies you need inside a container
(“Docker” containers in particular are becoming a popular mechanism) that
you can test on your own laptop before deploying, ensuring that your
Python code will run in production from an image that is byte-for-byte
identical to the one you used in testing. In either case, you are relieved of
the responsibility of developing a service that spawns numerous processes;
the platform will handle all redundancy and duplication for you.
In the Python community, there have long been modest efforts to pull
programmers out of the business of writing stand-alone services. The
widely used supervisord utility is a good example. It can execute several
copies of your software, redirect standard output and errors to log files,
restart a process if it fails, and even issue alarms if a service fails too often.
If you do decide to design a process that knows how to change itself into a
daemon, despite all of these temptations, you should be able to discover
decent methods for doing so in the Python community. PEP 3143 (available
at http://python.org), whose section “Other daemon implementations”
provides a well-curated collection of resources on the steps required, is a
solid starting point. The supervisord source code, as well as the
documentation for Python’s Standard Library module logging, may be of
interest.
The challenge of how to leverage an operating system network stack with
an operating system process to serve network requests is the same whether
you have a standalone Python process or a platform-powered web-scale
service. For the rest of the chapter, you’ll focus on this issue, with the goal

http://python.org/

of keeping the system as active as possible so that clients wait as little as
possible for their network requests to be answered.

A Basic Protocol
The examples in this chapter use a simple TCP protocol in which the client
asks one of three plain-text ASCII inquiries and then waits for the server to
complete its response. This keeps your attention on the many alternatives
given by server design. The client can ask as many questions as it likes
while the socket is open, and then close the connection without warning
when it runs out of questions, just like in HTTP. The ASCII question mark
character is used to mark the end of each inquiry.
Beautiful is better than?

The response is then returned, separated by a period.
Ugly.

Each of the three question-and-answer pairings is based on an aphorism
from the Zen of Python, a poem about the Python language’s inner
consistent architecture. Any time you need inspiration or want to reread the
poetry, open Python and type import this.
A number of routines are defined in Listing 7-1 to build a client and
numerous servers around this protocol, which you will see has no
command-line interface of its own. The module exists purely for later
listings to import as a support module so that they can utilise its patterns
without having to repeat them.

Listing 7-1. Supporting Data and Routines for the Toy Zen-of-Python
Protocol
#!/usr/bin/env python3
Network Programming in Python: The Basics
Constants and routines for supporting a certain network
conversation.
import argparse, socket, time
aphorisms = {b’Beautiful is better than?’: b’Ugly.’,
b’Explicit is better than?’: b’Implicit.’,
b’Simple is better than?’: b’Complex.’}
def get_answer(aphorism):

“””Return the string response to a particular Zen-of-Python
aphorism.”””
time.sleep(0.0) # increase to simulate an expensive operation
return aphorisms.get(aphorism, b’Error: unknown aphorism.’)
def parse_command_line(description):
“””Parse command line and return a socket address.”””
parser = argparse.ArgumentParser(description=description)
parser.add_argument(‘host’, help=’IP or hostname’)
parser.add_argument(‘-p’, metavar=’port’, type=int,
default=1060,
help=’TCP port (default 1060)’)
args = parser.parse_args()
address = (args.host, args.p)
return address
def create_srv_socket(address):
“””Build and return a listening server socket.”””
listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
listener.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
listener.bind(address)
listener.listen(64)
print(‘Listening at {}’.format(address))
return listener
def accept_connections_forever(listener):
“””Forever answer incoming connections on a listening
socket.”””
while True:
sock, address = listener.accept()
print(‘Accepted connection from {}’.format(address))
handle_conversation(sock, address)
def handle_conversation(sock, address):
“””Converse with a client over `sock` until they are done
talking.”””
try:
while True:
handle_request(sock)
except EOFError:
print(‘Client socket to {} has closed’.format(address))

except Exception as e:
print(‘Client {} error: {}’.format(address, e))
finally:
sock.close()
def handle_request(sock):
“””Receive a single client request on `sock` and send the
answer.”””
aphorism = recv_until(sock, b’?’)
answer = get_answer(aphorism)
sock.sendall(answer)
def recv_until(sock, suffix):
“””Receive bytes over socket `sock` until we receive the
`suffix`.”””
message = sock.recv(4096)
if not message:
raise EOFError(‘socket closed’)
while not message.endswith(suffix):
data = sock.recv(4096)
if not data:
raise IOError(‘received {!r} then socket
closed’.format(message))
message += data
return message

In the aphorisms dictionary, the three questions that a client can expect a
server to comprehend are listed as keys, and their responses are stored as
values. The get answer() function is a shorthand for performing a safe
lookup for an answer in this dictionary, with a brief error message returned
if the aphorism is not recognised. It’s worth noting that client requests
always end in a question mark, and that responses, including the fallback
error message, always end in a period. The small protocol’s framing is
provided by these two punctuation marks.
The next two functions provide some shared startup code that will be used
by all servers. Create srv socket() can generate the listening TCP socket that
a server requires to handle incoming connections, while parse command
line() provides a common technique for processing command-line
parameters.

The listing begins to highlight the central patterns of a server operation in
the last four procedures.
The cascade of four functions essentially replicates movements you learned
in Chapters 3 and 5, which dealt with building a TCP server for a listening
socket and framing data and handling errors, respectively.

accept connections forever() is a simple listen() loop that uses print()
to announce each joining client before passing the socket to the next
function.
handle conversation() is an error-catching procedure that wraps an
endless number of request-response cycles in such a way that any
difficulties with the client socket will not cause the programme to fail.
The one exception is EOFError is trapped in its own world. because it
is through this phrase that the innermost data-reception loop will
indicate that a client has completed making requests and has now hung
up—which, in this protocol (as in, HTTP), is a common occurrence
rather than a truly unique one. All other exceptions, on the other hand,
are handled as After being caught, mistakes are reported using print().
(Recall that all Python mistakes are normal.) inherit from Exception
and, as a result, will be caught by this except clause!) Regardless of
the code path by which this function terminates, the finally clause
ensures that the client socket is always closed. Because already-closed
file and socket objects in Python allow close() to be called as many
times as a programme desires, running close() like this is always safe.
handle request() conducts a single back-and-forth with the client,
reading its question and then responding with a response. Because the
send() method alone cannot guarantee the delivery of a whole payload,
send all() is used with caution.
The framing is done by recv until(), which follows the procedure
mentioned in Chapter 5. The socket’s recv() function is called
repeatedly until the accumulated byte string qualifies as a complete
question.

These procedures are the toolbox from which you’ll construct a number of
servers.
A client application is required to test the various servers in this chapter.
One is offered as a basic command-line tool in Listing 7-2.

Listing 7-2:. Example Zen-of-Python Protocol Client Program.
#!/usr/bin/env python3
Network Programming in Python: The Basics
Simple Zen-of-Python client that asks three questions then
disconnects.
import argparse, random, socket, zen_utils
def client(address, cause_error=False):
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(address)
aphorisms = list(zen_utils.aphorisms)
if cause_error:
sock.sendall(aphorisms[0][:-1])
return
for aphorism in random.sample(aphorisms, 3):
sock.sendall(aphorism)
print(aphorism, zen_utils.recv_until(sock, b’.’))

sock.close()
if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Example
client’)
parser.add_argument(‘host’, help=’IP or hostname’)
parser.add_argument(‘-e’, action=’store_true’, help=’cause an
error’)
parser.add_argument(‘-p’, metavar=’port’, type=int,
default=1060,
help=’TCP port (default 1060)’)

args = parser.parse_args()
address = (args.host, args.p)
client(address, args.e

When cause error is False, this client starts a TCP socket and sends three
aphorisms, waiting for the server to respond with a response after each one.
However, if you want to test what any of the servers in this chapter do in the
event of a mistake, you may use the -e option to make this client send an
unfinished inquiry and then hang up on the server abruptly. If a server is up
and running properly, you should see three questions and their answers.
$ python client.py 127.0.0.1
b’Beautiful is better than?’ b’Ugly.’

b’Simple is better than?’ b’Complex.’
b’Explicit is better than?’ b’Implicit.’

This client and the servers in this chapter utilise port 1060, as do many
other examples in this book, but accept the -p option to indicate an
alternative if that port is not accessible on your system.

A single-threaded server.
The zen utils module of Listing 7-1 provides a rich set of utilities that
lowers the job of constructing a simple single-threaded server—the simplest
conceivable architecture, as you saw in Chapter 3—to just the three-line
function of Listing 7-3.

Listing 7-3. The Simplest Possible Server Is Single-Threaded.
#!/usr/bin/env python3
Network Programming in Python: The Basics
Single-threaded server that serves one client at a time;
others must wait.
import zen_utils
if __name__ == ‘__main__’:
address = zen_utils.parse_command_line(‘simple single-threaded
server’)
listener = zen_utils.create_srv_socket(address)
zen_utils.accept_connections_forever(listener)

This server, like the servers you developed in Chapters 2 and 3, requires
only one command-line argument: the interface on which the server should
wait for incoming connections. Specify the typical local host IP address to
secure the server from other users on your LAN or network.
$ python srv_single.py 127.0.0.1
Listening at (‘127.0.0.1’, 1060)

Alternatively, you can be more brave and offer the service across all of your
system’s interfaces by specifying an empty string, which Python
understands as “every interface on the current machine.”
$ python srv_single.py ‘’
Listening at (‘’, 1060)

In either case, the server publishes a line indicating that it has successfully
opened its server port and then waits for incoming connections. If you wish
to play with those, the server also has a -h help option and a -p option to
specify a port other than 1060. To test how the server works once it’s up and
running, run the client script described in the previous section. The server
will report client activity in the terminal window where it is executing as
your clients connect and disconnect.
Accepted connection from (‘127.0.0.1’, 40765)
Client socket to (‘127.0.0.1’, 1060) has closed
Accepted connection from (‘127.0.0.1’, 40768)
Client socket to (‘127.0.0.1’, 1060) has closed

This design is all you need if your network service only has a single
customer making a single connection at a time. This server is ready for the
next connection as soon as the last one ends. For as long as there is a
connection, this server is either stuck in a recv() function, waiting for the
operating system to wake it up when fresh data arrives, or it is putting
together an answer as rapidly as it can and broadcasting it without
additional delay. Only when the client is not ready to receive data can
send() or sendall() block. When the client is ready, the data will be
transferred and the server will be unlocked, allowing it to return to its recv()
function. As a result, replies are provided to the client as rapidly as they can
be computed and received in all conditions.
When a second client tries to join while the server is still conversing with
the first, the single-threaded design’s flaw becomes evident. If the integer
parameter to listen() is bigger than zero, the operating system will at least
attempt to establish a connection with the second incoming client using a
three-way TCP handshake, saving time when the server is eventually ready
to talk. . However, until the server’s interaction with the first client is
complete, that connection will sit in the operating system’s listen queue.
The second client’s connection will be available to the server and its initial
request over that socket will be able to be responded only after the first
client discussion is completed and the server function has looped back to its
next call to accept().
It’s simple to launch a denial-of-service attack against this single-threaded
server: connect and never disconnect. The server will be stuck in recv()
indefinitely, waiting for your data. If the server author gets creative and uses

sock to specify a timeout. To avoid waiting indefinitely, use settimeout(),
then tweak your denial-of-service tool to issue requests frequently enough
that the timeout is never reached. The server will never be accessible to any
other clients.
Finally, the single-threaded design wastes server CPU and system resources
by preventing the server from performing other tasks while waiting for the
client to send the next request. Run the single-threaded server under the
control of the trace module from the Standard Library to see how long each
line takes.
$ python3.4 -m trace -tg --ignore-dir=/usr srv_single.py ‘’
Each line of output indicates the time in seconds since the server was
launched when a line of Python code began to execute. You’ll notice that
most lines begin executing as soon as the previous line completes, either in
the same hundredth or the next hundredth of a second. However, whenever
the server needs to wait for a response from the client, execution is halted
and must wait. Here’s an example of a test run:
3.02 zen_utils.py(40): print(‘Accepted connection...’...)
3.02 zen_utils.py(41): handle_conversation(sock, address)
⋮

3.02 zen_utils.py(57): aphorism = recv_until(sock, b’?’)
3.03 zen_utils.py(63): message = sock.recv(4096)
3.03 zen_utils.py(64): if not message:
3.03 zen_utils.py(66): while not message.endswith(suffix):
⋮

3.03 zen_utils.py(57): aphorism = recv_until(sock, b’?’)
3.03 zen_utils.py(63): message = sock.recv(4096)
3.08 zen_utils.py(64): if not message:
3.08 zen_utils.py(66): while not message.endswith(suffix):
⋮

3.08 zen_utils.py(57): aphorism = recv_until(sock, b’?’)
3.08 zen_utils.py(63): message = sock.recv(4096)
3.12 zen_utils.py(64): if not message:
3.12 zen_utils.py(66): while not message.endswith(suffix):
⋮

3.12 zen_utils.py(57): aphorism = recv_until(sock, b’?’)
3.12 zen_utils.py(63): message = sock.recv(4096)

3.16 zen_utils.py(64): if not message:
3.16 zen_utils.py(65): raise EOFError(‘socket closed’)
⋮

3.16 zen_utils.py(48): except EOFError:
3.16 zen_utils.py(49): print(‘Client socket...has closed’...)
3.16 zen_utils.py(53): sock.close()
3.16 zen_utils.py(39): sock, address = listener.accept()

This is a complete discussion with the client.py programme, including three
requests and responses. It has to wait for the client three times during the
0.14 seconds of processing time between the first and last lines of this trace,
for a total of about 0.05 + 0.04 + 0.04 = 0.13 seconds spent idle! This
suggests that during this exchange, the CPU is only 0.01 / 0.14 = 7%
occupied. Of course, this is just an estimate. The fact that we’re operating
under trace causes the server to slow down and use more CPU, and the
resolution of these values is already imprecise. However, if you use more
powerful technologies, you will find that this finding is confirmed. Unless
they’re doing a lot of in-CPU work during each request, single-threaded
servers are terrible at making the server machine operate to its maximum
capability. While other customers wait in line to be served, the CPU
remains idle.
There are two technical details that are worth mentioning. The first recv()
call returns immediately; only the second and third recv() calls, as well as
the final recv() call before learning that the connection has been closed,
exhibit a delay before returning data. This is because the network stacks of
the operating system smartly include the text of the initial request in the
same three-way handshake that establishes the TCP connection. As a result,
by the time the connection is properly established and accept() may return,
data is already waiting to be returned from recv()!
Another point to note is that send() has no delay. This is due to the fact that
on a POSIX system, it returns as soon as the outgoing data has been
enrolled in the operating system’s outgoing buffers. Just because send() has
returned does not mean that the system has really transmitted any data! The
application can only force the operating system to halt its progress and wait
for the result of transmitting by turning around and listening for more client
data.

Let’s return to our original topic. How may a single-threaded server’s
constraints be overcome? The rest of this chapter looks at two competing
strategies for preventing a single client from having complete control over a
server. Both strategies allow the server to communicate with multiple
clients at the same time. First, I’ll go over threads (processes also work),
which assign the task of transferring the server’s attention between different
clients to the operating system. Then I’ll go on to asynchronous server
architecture, where I’ll teach you how to manage your own attention shifts
so that you may speak with multiple clients at once in a single thread of
control.

Multiprocess and Threaded Servers
If you want your server to communicate with multiple clients at the same
time, one popular solution is to use your operating system’s built-in support
for allowing multiple threads of control to pass through the same section of
code independently, either by creating threads with the same memory
footprint or by creating processes that run independently of one another.
The benefit of this technique is its simplicity: you may launch many copies
of the same code that operates your single-threaded server.
Its drawback is that the number of clients with whom you can communicate
is restricted by the scaling of your operating system’s concurrency features.
Even an idle or slow client will demand the attention of an entire thread or
process, which will consume both system RAM and a slot in the process
table even if it is blocked in recv(). Operating systems rarely scale well
when thousands or more threads are running at the same time, and the
context switches necessary when the system’s attention shifts from one
client to the next will slow down your service as it grows more popular.
A multithreaded or multiprocess server can be expected to be made up of a
master thread of control that performs a tight accept() loop before handing
off incoming client sockets to a waiting queue of workers. . Fortunately, the
operating system makes things a lot easier for you: each thread can have its
own copy of the listening server socket and run its own accept() command.
If all threads are currently busy, the operating system will assign each new
client connection to the thread that is waiting for its accept() to complete, or
it will queue the connection until one of them is available. An example can
be found in Listing 7-4.

Listing 7-4. Multithreaded Server
#!/usr/bin/env python3
Network Programming in Python: The Basics
Using multiple threads to serve several clients in parallel.
import zen_utils
from threading import Thread
def start_threads(listener, workers=4):
t = (listener,)
for i in range(workers):
Thread(target=zen_utils.accept_connections_forever,
args=t).start()
if __name__ == ‘__main__’:
address = zen_utils.parse_command_line(‘multi-threaded
server’)
listener = zen_utils.create_srv_socket(address)
start_threads(listener)

Note that this is simply one conceivable multithreaded programme design:
the main thread spawns n server threads and then exits, certain that those n
threads would keep the process alive indefinitely. Other possibilities exist.
The main thread, for example, could live on and become a server thread.
Alternatively, it may serve as a monitor, occasionally checking to see if the
n server threads are still active and restarting replacement threads if any of
them die. A change of pace from stitching. To multiprocessing, add a
thread. Each control thread would have its own memory image and file
descriptor area, according to the process. Increasing the operating system’s
cost, but better isolating the threads and making it far more difficult for
them to crash the main monitor thread.
All of these patterns, which you can learn about in the threading and
multiprocessing module documentation as well as in books and guides on
Python concurrency, have one thing in common: they all dedicate a
relatively expensive operating system–visible thread of control to every
connected client, whether or not that client is currently making requests.
However, because your server code can remain unchanged while being
controlled by multiple threads (assuming that each thread establishes its
own database connection and opens files, removing the need for resource
coordination between threads), it’s simple to test the multithreaded
approach on your server’s workload. If it shows capable of handling your

request load, its simplicity makes it an especially appealing strategy for
internal services that aren’t accessible to the public, where an adversary
can’t simply open idle connections until your pool of threads or processes is
depleted.

The SocketServer Framework of the Past
The pattern of leveraging operating system–visible threads of control for
handling numerous client interactions at the same time outlined in the
previous section is common enough that a framework embodying the
pattern is integrated into the Python Standard Library. With a 1990s design
riddled with object orientation and several inherited mix-ins, it’s worth a
quick example both to show how the multithreaded pattern may be
generalised and to familiarise you with the module in case you ever need to
maintain old code that utilises it.
The socketserver module (known as SocketServer in Python 2) separates
the server pattern, which understands how to open a listening socket and
accept new client connections, from the handler pattern, which understands
how to speak over an open socket. As shown in Listing 7-5, these two
patterns are merged by creating a server object with a handler class as one
of its arguments.

Listing 7-5:. Built on the Standard Library Server Pattern, a Threaded
Server
#!/usr/bin/env python3
Network Programming in Python: The Basics
Uses the legacy “socketserver” Standard Library module to
write a server.
from socketserver import BaseRequestHandler, TCPServer,
ThreadingMixIn
import zen_utils
class ZenHandler(BaseRequestHandler):
def handle(self):
zen_utils.handle_conversation(self.request,
self.client_address)

class ZenServer(ThreadingMixIn, TCPServer):
allow_reuse_address = 1

address_family = socket.AF_INET6 # uncomment if you need
IPv6

if __name__ == ‘__main__’:
address = zen_utils.parse_command_line(‘legacy
“SocketServer” server’)

server = ZenServer(address, ZenHandler)
server.serve_forever()

Instead of threads, the programmer can have entirely isolated processes
service incoming clients by substituting ForkingMixIn for ThreadingMixIn.
When compared to the earlier Listing 7-4, which started a fixed number of
threads that could be chosen by a server administrator based on how many
threads of control a given server and operating system can easily manage
without a significant degradation in performance, the vast weakness of this
approach should be obvious. In contrast, Listing 7-5 allows the pool of
connecting clients to decide how many threads are started, with no limit on
how many threads end up operating on the server! An attacker can easily
bring the server to its knees as a result of this. This Standard Library
module, therefore, cannot be recommended for production and customer-
facing services.

Async Servers
How can you keep the CPU busy between giving a response to a client and
receiving its next request without having to pay for an operating system–
visible thread of control per client? The answer is that you can create your
server in an asynchronous pattern, which means that instead of blocking
and waiting for data to come or depart from a single client, the code is
willing to listen to a long list of client sockets and react whenever one of
them is ready for more interaction.
Two aspects of modern operating system network stacks enable this pattern.
The first is that they provide a system function that allows a process to
block waiting on a full list of client sockets rather than just one, allowing a
single thread to service hundreds or thousands of client sockets at once. The
second feature is that a socket can be configured as nonblocking, which
means that it will never, ever block the calling thread in a send() or recv()
call, and will always return from the send() or recv() system call
immediately regardless of whether or not more progress can be made in the

conversation. If progress is slow, the caller must try again later when the
client appears to be ready for more interaction.
The term asynchronous refers to the fact that the client code never waits for
a specific client, and that the thread of control that runs the code is not
synchronised, or made to wait in lockstep, with any one client’s interaction.
Instead, it distributes the work of servicing among all connected clients at
will.
Operating systems enable asynchronous mode through a variety of calls.
The POSIX call select() is the oldest, but it has various inefficiencies that
have led to newer equivalents such as poll() on Linux and epoll() on BSD.
W. Richard Stevens’ book UNIX Network Programming (Prentice Hall,
2003) is the classic reference on the subject. Because the goal of this
chapter isn’t for you to create your own asynchronous control loop, I’ll
concentrate on poll() and skip the others. Instead, you’re using a poll()-
powered loop as an illustration of what happens behind the scenes of a full
asynchronous framework, which is how you’ll want to implement
asynchrony in your projects. In the next sections, we’ll look at a few
different frameworks.
The complete internals of a raw asynchronous server for your small Zen
protocol are shown in Listing 7-6.

Listing 7-6. A Raw Asynchronous Event Loop
#!/usr/bin/env python3
Network Programming in Python: The Basics
Asynchronous I/O driven directly by the poll() system call.
import select, zen_utils
def all_events_forever(poll_object):
while True:
for fd, event in poll_object.poll():
yield fd, event

def serve(listener):
sockets = {listener.fileno(): listener}
addresses = {}
bytes_received = {}
bytes_to_send = {}
poll_object = select.poll()

poll_object.register(listener, select.POLLIN)
for fd, event in all_events_forever(poll_object):
sock = sockets[fd]

Socket closed: remove it from our data structures.
if event & (select.POLLHUP | select.POLLERR |
select.POLLNVAL):

address = addresses.pop(sock)
rb = bytes_received.pop(sock, b’’)
sb = bytes_to_send.pop(sock, b’’)
if rb:
print(‘Client {} sent {} but then closed’.format(address,
rb))
elif sb:
print(‘Client {} closed before we sent {}’.format(address,
sb))
else:

print(‘Client {} closed socket normally’.format(address))
poll_object.unregister(fd)
del sockets[fd]
New socket: add it to our data structures.
elif sock is listener:
sock, address = sock.accept()

print(‘Accepted connection from {}’.format(address))
sock.setblocking(False) # force socket.timeout if we blunder

sockets[sock.fileno()] = sock
addresses[sock] = address

poll_object.register(sock, select.POLLIN)
Incoming data: keep receiving until we see the suffix.
elif event & select.POLLIN:
more_data = sock.recv(4096)
if not more_data: # end-of-file

sock.close() # next poll() will POLLNVAL, and thus clean up
continue

data = bytes_received.pop(sock, b’’) + more_data
if data.endswith(b’?’):
bytes_to_send[sock] = zen_utils.get_answer(data)
poll_object.modify(sock, select.POLLOUT)

else:
bytes_received[sock] = data
Socket ready to send: keep sending until all bytes are
delivered.

elif event & select.POLLOUT:
data = bytes_to_send.pop(sock)
n = sock.send(data)
if n < len(data):
bytes_to_send[sock] = data[n:]
else:
poll_object.modify(sock, select.POLLIN)

if __name__ == ‘__main__’:
address = zen_utils.parse_command_line(‘low-level async
server’)
listener = zen_utils.create_srv_socket(address)
serve(listener)

Instead of relying on the operating system to swap contexts when activity
shifts from one client to another, this event loop takes control of keeping the
state of each client dialogue in its own data structures. Because poll() can
yield several events per call, the server has two loops: a while loop for
repeatedly calling poll() and an inner loop for processing each event
returned by poll(). To avoid the main server loop being buried two levels of
indentation deep, you hide these two levels of iteration behind a generator.
When poll() indicates that file descriptor n is ready for more action, a
dictionary of sockets is maintained. The matching Python socket may be
found here. Even when the socket has closed and the operating system no
longer reminds you of the endpoint to which it was connected, you
remember the addresses of your sockets so that you can print diagnostic
messages with the right remote address.
The bytes received dictionary, where you stuff incoming data while waiting
for a request to complete, and the bytes to send dictionary, where outgoing
bytes wait until the operating system can schedule them for transmission,
are the real heart of the asynchronous server.
These data structures, when combined with the event for which you inform
poll() that you’re waiting on each socket, constitute a complete state
machine for handling a client dialogue one tiny step at a time.

1. A ready-to-connect client appears first as activity on the listening
server socket, which you keep in the POLLIN (“poll input”) state at all
times. When this happens, you run accept(), save the socket and its
address in your dictionaries, and tell the poll object that you’re ready
to receive data from the new client socket.

2. You recv() up to 4KB of data when the client socket is supplied to you
with a POLLIN event. If the request does not include a terminating
question mark, save the data to the bytes received dictionary and
return to the top of the loop to poll() again. Otherwise, you’ve got a
full question, and you can answer to the client’s request by seeking up
the appropriate response and adding it to your bytes to send dictionary.
This necessitates a pivotal change: moving the socket from POLLIN
mode, where you want to be notified when more data comes, to
POLLOUT mode, where you want to be told as soon as the outgoing
buffers are free, because you’re now sending rather than receiving
data.

3. When the outgoing buffers on the client socket can receive at least one
byte, the poll() function now tells you with POLLOUT, and you
respond by attempting a send() of everything you have left to transmit
and keeping just the bytes that send() could not fit into the outgoing
buffers.

4. Finally, a POLLOUT appears, and its send() function allows you to
complete the transmission of all remaining outbound data. A request-
response cycle is completed at this point, and you flip the socket back
into POLLIN state to handle another request.

5. You dispose of a client socket and any outgoing or incoming buffers
when it ultimately gives you an error or closes. That conversation, at
the very least, is now finished out of all the others you’re having.

The asynchronous approach’s fundamental feature is that a single control
thread can handle hundreds, if not thousands, of client conversations. As
each client socket prepares for its next event, the code advances to the next
action for that socket, receives or sends any data it can, and then returns to
poll() to monitor for more activity. This single thread of control can handle
a large number of clients by keeping all client-conversation states in one set
of dictionaries, indexed by client socket, without requiring a single
operating system context switch (aside from the privilege-mode escalations

and de-escalations involved in entering the operating system itself for the
poll(), recv(), send(), and close() system calls). Essentially, you replace the
full-fledged operating system context-switch that a multithreaded or
multiprocess server would require to switch its attention from one client to
another with the key lookup offered by Python dictionaries.
Technically, the previous code can run without having to use sock to set
each new client socket to nonblocking mode.
setblocking(False). Why? Because Listing 7-6 never calls recv() unless data
is waiting to be received, and recv() never blocks if at least one byte of
input is ready; and it never calls send() unless data can be sent, and send()
never blocks if at least one byte can be written to the operating system’s
outgoing network buffers. However, doing setblocking() is prudent in case
you make a mistake. In the absence of it, a misplaced call to send() or recv()
would cause you to block and become unresponsive to all but the one client.
A misstep on your side will raise socket with the setblocking() call in place.
timeout and notify you that you have made a call that the operating system
cannot handle right away.
If you run many clients against this server, you’ll notice that its single
thread manages all of the concurrent interactions with ease. With Listing 7-
6, however, you had to delve into quite a few operating system internals.
What if you want to concentrate on your client code and delegate the
specifics of select(), poll(), and epoll() to someone else?

Callback-Style asyncio
Python 3.4 included the asyncio framework to the Standard Library, which
was designed in part by Guido van Rossum, the creator of Python. It
attempts to unify a field that had grown fragmented in the era of Python 2
by providing a standard interface for event loops based on select(), epoll(),
and related technologies.
You can probably already imagine the duties that such a framework
assumes after looking at Listing 7-6 and observing how little of its code is
particular to the sample question-and-answer protocol that you are studying
in this chapter. It keeps a central select-style loop going. It maintains a table
of sockets where I/O activity is expected and adds or removes them from
the select loop’s attention as needed. Once the sockets are closed, it cleans

up and abandons them. Finally, when actual data is received, user code is
used to decide the appropriate response.
Two programming styles are supported by the asyncio framework. One,
which reminds programmers of the old Twisted framework under Python 2,
uses an object instance to keep track of each open client connection. The
stages in Listing 7-6 that advanced a client dialogue become method calls
on the object instance in this design pattern. Listing 7-7 shows the familiar
stages of reading in a question and generating a response, written in a way
that works with the asyncio framework.

Listing 7-7:. An asyncio Server in the Callback Style
#!/usr/bin/env python3
Network Programming in Python: The Basics
Asynchronous I/O inside “asyncio” callback methods.
import asyncio, zen_utils
class ZenServer(asyncio.Protocol):
def connection_made(self, transport):
self.transport = transport
self.address = transport.get_extra_info(‘peername’)
self.data = b’’
print(‘Accepted connection from {}’.format(self.address))
def data_received(self, data):
self.data += data
if self.data.endswith(b’?’):
answer = zen_utils.get_answer(self.data)
self.transport.write(answer)
self.data = b’’
def connection_lost(self, exc):
if exc:
print(‘Client {} error: {}’.format(self.address, exc))
elif self.data:
print(‘Client {} sent {} but then closed’
.format(self.address, self.data))
else:
print(‘Client {} closed socket’.format(self.address))

if __name__ == ‘__main__’:

address = zen_utils.parse_command_line(‘asyncio server using
callbacks’)
loop = asyncio.get_event_loop()
coro = loop.create_server(ZenServer, *address)
server = loop.run_until_complete(coro)
print(‘Listening at {}’.format(address))
try:
loop.run_forever()
finally:
server.close()
loop.close()

In Listing 7-7, you can see how the real socket object is properly isolated
from the protocol code. The framework, not the socket, is consulted for the
remote address. A method call is used to deliver data, and it merely displays
the string that has arrived. With its transit, the answer you want to send is
passed off to the framework. Your code will be out of the loop—literally—
about when that data will be handed off to the operating system for
transmission back to the client, thanks to the write() method call. The
framework guarantees that it will happen as soon as possible, as long as it
does not interfere with the progress of other client connections that require
attention.
In most cases, asynchronous workers grow more sophisticated than this.
When responses to clients can’t be composed as quickly as they can here,
but instead require reading from files on the file system or consulting back-
end services like databases, this is a common example. In such instance,
your client code will have to work in two directions: it will defer to the
framework while sending and receiving data from the filesystem or
database, as well as when sending and receiving data from the client. In
such cases, your callback methods may create futures objects that give even
more callbacks, which will be triggered after the database or disc I/O is
complete.
Details can be found in the official asyncio documentation.

Coroutine-Style asyncio
Another way to write protocol code for the asyncio framework is to write a
coroutine, which is a function that, instead of blocking in an I/O routine,

stops and returns control to its caller when it needs to do I/O. The most
common way in which the Python language enables coroutines is through
generators, which are functions that contain one or more yield statements
and, as a result, reel off a sequence of objects rather than returning a single
value when called.
If you’ve ever created generic generators with yield statements that merely
offer stuff for consumption, you’ll be astonished at how asyncio-targeted
generators appear. They make use of the PEP 380-developed expanded
yield syntax. With the enhanced syntax, a running generator can not only
reel off all the items yielded by another generator with the yield from
statement, but it can also return a value to the inside of the coroutine and
even raise an exception if the consumer requires it. This allows a pattern in
which the coroutine performs a result = yield of an object describing an
operation it wants performed—read on another socket or access to the
filesystem—and either receives the result of the successful operation in
result or experiences an exception indicating that the operation failed right
there in the coroutine.
The protocol is implemented as a coroutine in Listing 7-8.

Listing 7-8. An asyncio Server in the Coroutine Style
#!/usr/bin/env python3
Programming in Python: The Basics
Asynchronous I/O inside an “asyncio” coroutine.
import asyncio, zen_utils
@asyncio.coroutine
def handle_conversation(reader, writer):
address = writer.get_extra_info(‘peername’)
print(‘Accepted connection from {}’.format(address))
while True:
data = b’’
while not data.endswith(b’?’):
more_data = yield from reader.read(4096)
if not more_data:

if data:
print(‘Client {} sent {!r} but then closed’
.format(address, data))
else:

print(‘Client {} closed socket normally’.format(address))
return

data += more_data
answer = zen_utils.get_answer(data)
writer.write(answer)

if __name__ == ‘__main__’:
address = zen_utils.parse_command_line(‘asyncio server using
coroutine’)
loop = asyncio.get_event_loop()
coro = asyncio.start_server(handle_conversation, *address)
server = loop.run_until_complete(coro)
print(‘Listening at {}’.format(address))
try:
loop.run_forever()

finally:
server.close()
loop.close()

You’ll recognise all of the code in this list if you compare it to the earlier
server attempts. The old framing operation of the while loop calling recv()
repeatedly is followed by a write of the reply to the waiting client, all
wrapped up in a while loop that is eager to keep responding to as many
requests as the client wants to make. However, there is a key distinction that
prevents you from just reusing previous implementations of the same logic.
It takes the shape of a generator here, which performs a yield whenever the
previous code had merely performed a blocking action and waited for the
operating system to reply. This distinction allows this generator to connect
to the asyncio subsystem without blocking it or prohibiting several workers
from working at the same time.
This method is recommended for coroutines by PEP 380 since it makes it
easier to see where your generator might be paused. Every time it executes
a yield, it could cease running for an indefinite period of time. Some
programmers dislike having explicit yield statements in their code, thus
frameworks like gevent and eventlet in Python 2 take typical networking
code with normal blocking I/O requests and intercept them to do what is
essentially asynchronous I/O underneath the hood. As of this writing, none
of these frameworks have been converted to Python 3. If they ever arrive,
programmers will have to choose between the verbose but explicit approach

of an asyncio coroutine, where a “yield” can be seen everywhere a pause
might occur, and the implicit but more compact code possible when calls
like recv() return control to the asynchronous I/O loop while appearing to
be innocent method calls in the code itself.

The asyncore Legacy Module
Listing 7-9 uses the asyncore Standard Library module to build the sample
protocol, in case you come across any services written against it.

Listing 7-9. Using legacy asyncore Framework
#!/usr/bin/env python3
Programming in Python: The Basics
Uses the legacy “asyncore” Standard Library module to write
a server.
import asyncore, asynchat, zen_utils
class ZenRequestHandler(asynchat.async_chat):
def __init__(self, sock):
asynchat.async_chat.__init__(self, sock)
self.set_terminator(b’?’)
self.data = b’’

def collect_incoming_data(self, more_data):
self.data += more_data
def found_terminator(self):
answer = zen_utils.get_answer(self.data + b’?’)

self.push(answer)
self.initiate_send()
self.data = b’’

class ZenServer(asyncore.dispatcher):
def handle_accept(self):
sock, address = self.accept()
ZenRequestHandler(sock)

if __name__ == ‘__main__’:
address = zen_utils.parse_command_line(‘legacy “asyncore”
server’)
listener = zen_utils.create_srv_socket(address)
server = ZenServer(listener)
server.accepting = True # we already called listen()

asyncore.loop()

If you’re a seasoned Python coder, this listing will trigger red flags. Despite
the fact that the ZenServer object is never explicitly passed to the
asyncore.loop() method or registered in any way, the control loop appears to
know that the service is available! Clearly, this module is using module-
level globals or some other malicious means to construct ties between the
main control loop, the server object, and the request handlers it generates,
but in a way that you can’t see.
However, you can see that many of the same actions are carried out behind
the scenes that asyncio had exposed. Each each client connection creates a
new instance of ZenRequestHandler, in which you can store any kind of
state you need to keep track of how the client interaction is going in the
instance variables.
Furthermore, there is an asymmetry between receiving and sending, which
is typical of the asynchronous frameworks you’ve been looking at.
Receiving data entails returning and passing control to the framework, as
well as being called back for each fresh block of bytes received as input.
However, sending data is a fire-and-forget operation in which you hand
over management of the entire outgoing payload to the framework and trust
that it will make as many send() calls as necessary to get the data
transferred.
Finally, you can see that asynchronous frameworks, unless they use
invisible magic like gevent or eventlet (both of which are currently Python
2 only), force you to write server code in idioms that are distinct from those
used in a simple server like the one illustrated in Listing 7-3. While
multithreading and multiprocessing merely ran your single-threaded code,
an asynchronous approach compels you to break up your code into small
chunks that can independently run without ever blocking. Each unblockable
code snippet must be included within a method in a callback style; in a
coroutine style, each basic unblockable operation must be wedged between
yield or yield from instructions.

The Best of Both Worlds
By just looking from one protocol object to another (or, in the case of the
more rudimentary Listing 7-6, between one dictionary entry and another),

these asynchronous servers can switch nimbly between one client’s traffic
and another’s. Clients can be served at a lower cost than when the operating
system is involved in the context shifts.
An asynchronous server, on the other hand, has a fixed limit. Because it
executes all of its work in a single operating system thread, it reaches a wall
and can no longer process client work once the CPU is at 100% utilisation.
It’s a pattern that, in its purest form, is always confined to a single CPU, no
matter how many cores your server has.
Fortunately, there is a solution at hand. When you need high performance,
use an asynchronous callback object or coroutine to design your service and
run it in an asynchronous framework. Then take a step back and configure
your server’s operating system to launch as many event loop processes as
you have CPU cores!
(One item to discuss with your server administrator: should you leave one
or two cores open for the operating system rather than using them all?)
You’ll be able to enjoy the best of both worlds. . The asynchronous
framework can blaze away on a given CPU, cycling between active client
sockets as often as it wants without having to move contexts into another
process. New incoming connections, on the other hand, can be distributed
among all active server processes by the operating system, optimally
balancing the load over the entire server.
You’ll probably want to corral these processes inside a daemon that can
check their health and restart them, or warn staff, if they fail, as explained
in the section “A Few Words About Deployment.” From supervisord to full
platform-as-a-service containerization, any of the technologies outlined
there should work nicely for an asynchronous service.

Under the Influence of inetd
I’d be remiss if I didn’t include the venerable inetd daemon, which is
available for practically all BSD and Linux variants. It overcomes the
problem of needing to launch n different daemons when the system boots if
you wish to offer n different network services on a single server machine. It
was invented in the early days of the Internet.
You just list every port that you want listening on the machine in the
/etc/inetd.conf file.

Every one of them gets a bind() and listen() from the inetd daemon, but it
only starts a server process if a client connects. Because inetd is the process
that opens the low-numbered port, this technique makes it simple to handle
low-port-number services that operate under a normal user account. The
inetd daemon can either launch one process per client connection or expect
your server to stay up and continue listening for new connections once it
has accepted the first one for a TCP service like the one in this chapter (see
your inetd(8) documentation for the more complicated case of a UDP
datagram service).
It is more expensive and places a greater demand on the server to create one
process per connection, but it is also easier. The string nowait in the fourth
field of a service’s inetd.conf entry designates single-shot services.
When such a service starts up, it will discover that the client socket is
already connected to its standard input, output, and error. The service
should only communicate with that one client before exiting. Listing 7-10
shows an example that can be utilised with the inetd.conf line previously
mentioned.

Listing 7-10. Answer a Single Client, Whose Socket Is the
stdin/stdout/stderr
#!/usr/bin/env python3
Programming in Python: The Basics
Single-shot server for the use of inetd(8).
import socket, sys, zen_utils
if __name__ == ‘__main__’:
sock = socket.fromfd(0, socket.AF_INET, socket.SOCK_STREAM)
sys.stdin = open(‘/dev/null’, ‘r’)
sys.stdout = sys.stderr = open(‘log.txt’, ‘a’, buffering=1)
address = sock.getpeername()
print(‘Accepted connection from {}’.format(address))
zen_utils.handle_conversation(sock, address)

Because you rarely want raw tracebacks and status messages—that Python
or one of its libraries might direct toward standard out or especially
standard error—interrupting your conversation with the client, this script is
careful to replace the Python standard input, output, and error objects with
more appropriate open files. Because it only touches the file objects inside

of sys and not the real file descriptors, this manoeuvre only fixes I/O
attempted from within Python. Close the underlying file descriptors 0, 1,
and 2 as well if your server calls any low-level C libraries that do their own
standard I/O. However, in that scenario, you’re starting to do the kind of
sandboxing that’s best done using supervisord, a daemonization module, or
platform-style containerization, as mentioned in the previous section “A
Few Words About Deployment.”
So long as the port you’ve chosen isn’t a low-numbered one, you may
verify Listing 7-10 from your normal user command line by executing inetd
-d inet.conf against a little configuration file that contains the line supplied
earlier, and then connecting to the port as usual using client.py.
The alternate pattern is to use the string wait in the fourth field of your
inetd.conf entry, which will provide your script access to the listener socket.
This assigns the responsibility of running accept() for the client who is
currently waiting to your script. The benefit of this is that your server can
opt to stay alive and continue to run accept() to accept new client
connections without using inetd. This is potentially more efficient than
beginning a new process for each incoming connection. If clients cease
connecting for a time, your server can exit() to save memory until a client
requires the service again; inetd will detect that your service has exited and
resume listening.
Listing 7-11 is intended to be used when in the waiting state. It can accept
new connections indefinitely, but if several seconds pass without any new
client connections, it will time out and leave, freeing the server from the
need to retain it in memory.

Listing 7-11. Answer a few client calls, but eventually become bored and
time out.
#!/usr/bin/env python3
Programming in Python: The Basics
Multi-shot server for the use of inetd(8).
import socket, sys, zen_utils
if __name__ == ‘__main__’:
listener = socket.fromfd(0, socket.AF_INET,
socket.SOCK_STREAM)
sys.stdin = open(‘/dev/null’, ‘r’)

sys.stdout = sys.stderr = open(‘log.txt’, ‘a’, buffering=1)
listener.settimeout(8.0)

try:
zen_utils.accept_connections_forever(listener)
except socket.timeout:
print(‘Waited 8 seconds with no further connections; shutting
down’)

Of course, this server is based on the same single-threaded approach that I
used to begin this chapter.
You’ll probably want a more robust design in production, and you can
utilise any of the ideas mentioned in this chapter. The only criterion is that
they be able to accept() an already-listening socket again and over again
indefinitely. This is straightforward if you don’t mind your server process
never exiting once it’s started by inetd. If you want the server to time out
and shut down after a period of inactivity, it can get a little more involved
(and outside the scope of this book), because timing out and shutting down
a group of threads can be tricky. or processes to ensure that none of them
are now talking to a client and that none of them have recently received
enough client connections to justify keeping the server alive.
In some versions of inetd, there is also a simple access control mechanism
based on IP address and hostname. The mechanism is a descendant of tcpd,
an old software that used to work alongside inetd before being merged into
the same process. Its /etc/hosts.allow and /etc/hosts.ban files can be used to
grant and deny access to specific hosts. Prevent some (or all!) IP addresses
from connecting to one of your services, depending on its rules. If you’re
having trouble getting customers to connect to one of your inetd-powered
services, check your system documentation and look at how your system
administrator has set these files.

Conclusion
The network servers in Chapters 2 and 3 could only deal with one client at a
time, and all others had to wait until the last client socket had closed before
continuing. There are two methods for getting beyond this stumbling
barrier.

From a programming standpoint, the most basic is multithreading (or
multiprocessing), in which the server code is largely unaffected and the
operating system is tasked with switching between workers discreetly so
that waiting clients receive results promptly while idle clients require no
server CPU. This method not only allows multiple client discussions to
progress at the same time, but it also makes better use of a server CPU that
would otherwise be idle waiting for further work from a single client.
The more difficult but powerful alternative is to use an asynchronous
programming style, which allows a single thread of control to switch its
attention between as many clients as it wants by providing the operating
system with a complete list of sockets with whom it is now conversing. The
issue is that this necessitates splitting the logic of processing a client request
and creating a response into discrete, nonblocking bits of code that can
transfer control back to the asynchronous framework when it’s time to wait
on the client once more. While an asynchronous server can be developed
manually using select() or poll(), most programmers will prefer to use a
framework, such as the asyncio framework included in Python 3.4 and
newer’s Standard Library.
Deployment is the process of arranging for a service you’ve built to be
placed on a server and to begin running when the system boots, and it can
be automated using a variety of current technologies, such as supervisord or
passing control to a platform-as-a-service container. The ancient inetd
daemon, which provides a bare-bones technique to ensure your service is
launched when a client first needs it, may be the simplest feasible
deployment for a baseline Linux server.
The subject of servers will come up again in this book. After Chapter 8
looks at a few basic network-based services that modern Python
programmers rely on, Chapters 9 through 11 look at the design of the HTTP
protocol and the Python tools for acting as both a client and a server, with
the designs presented in this chapter available all over again in the choice
between a forking web server like Gunicorn and an asynchronous
framework like Tornado.

CHAPTER 8
Message Queues and Caches

Despite its briefness, this chapter may be one of the most important in the
book. It examines two technologies—caches and message queues—that
have evolved into essential building blocks for high-volume systems. The
novel hits a turning point at this time. The sockets API and how Python can
use primitive IP network operations to establish communication channels
were covered in the previous chapters. As you’ll find if you go ahead, the
following chapters are all about specific protocols based on sockets—how
to retrieve documents from the World Wide Web, send e-mail, and submit
commands to remote servers.
What distinguishes the two tools you’ll examine in this chapter? They have
a lot of similarities.

These technologies are popular because they are effective tools. The
point of utilising Memcached, or a message queue, is that it is a well-
written service that will solve a specific problem for you, not that it
implements an intriguing protocol that will allow you to communicate
with other tools.
These tools are typically used to handle challenges that are internal to
a company. You can’t always identify whether caches, queues, or load-
distribution mechanisms are being utilised to power a web site or
network service from the outside.
While protocols like HTTP and SMTP were designed with specific
payloads in mind (hypertext documents and e-mail messages,
respectively), caches and message queues are typically agnostic about
the data they transport for you.

This chapter is not meant to provide a comprehensive guide to any of these
technologies. There is extensive online documentation for each of the
libraries mentioned, and for the most prominent ones, entire books have
been published about them. Instead,

Structure
Using Memcached (memory caching)
Hashing and Sharding
Message Queues
Using Python’s Message Queues
Conclusion

Objectives:
The goal of this chapter is to introduce you to the problem that each tool
addresses, explain how to use the service to solve that problem, and provide
some tips on how to utilise the tool from Python. After all, apart from the
basic, lifelong process of learning to programme, the greatest hurdle that a
programmer often faces is recognising common problems for which rapid
prebuilt solutions exist. Programmers have an unfortunate propensity of re-
inventing the wheel over and over again. Consider this chapter as a gift of
two completed wheels in the hopes that you will not have to make them
yourself.

Using Memcached (memory caching)
The “memory cache daemon” is Memcached. It creates a single, massive
least-recently used (LRU) cache from the free, idle RAM on the servers
where it is installed. It had a revolutionary impact on several significant
Internet services, according to all reports. Following a brief overview of
how to utilise it from Python, I’ll go into its implementation, which will
teach you about a key modern network concept known as sharding.
The actual use of Memcached is supposed to be straightforward.

Every server with some free memory has a Memcached daemon
running.
You create a list of your new Memcached daemons’ IP addresses and
port numbers and disseminate it to all of the clients who will be
accessing the cache.

Your client programmes now have access to an enterprise-wide,
lightning-fast key-value cache that serves as a large Python dictionary
that all of your servers can share. The cache works on an LRU basis,
which means it deletes old things that haven’t been accessed in a while
to make place for new entries and records that are often visited.

There are presently enough Python clients available for Memcached that I’d
rather point you to the page that lists them than try to review them here:
http://code.google.com/p/memcached/wiki/Clients.
Because the first client is written entirely in Python, it will not need to
compile against any libraries. Because it’s on the Python Package Index, it
should go together smoothly in a virtual environment (see Chapter 1). The
Python 3 version can be installed with with one line.
$ pip install python3-memcached

This package’s API is straightforward. Though you would expect a more
closely related interface to a Python dictionary with native methods like
__getitem__(), the creator of this API elected to utilise the same method
names as other Memcached-supported languages. This was a wise option
because it makes translating Memcached examples into Python much
easier. If you have Memcached installed and operating on your machine at
its default port of 11211, a simple interaction at the Python prompt might
look like this:
>>> import memcache
>>> mc = memcache.Client([‘127.0.0.1:11211’])
>>> mc.set(‘user:19’, ‘Simple is better than complex.’)
True
>>> mc.get(‘user:19’)
‘Simple is better than complex.’

The interface is pretty similar to that of a Python dictionary, as you can see.
When you submit a string as a value like this, it is directly written to
Memcached as UTF-8 and then decoded when you fetch it later. Any
Python object other than a basic string will cause the memcache module to
auto-pickle the value and save the binary pickle in Memcached (see Chapter
5). If you ever create a Python application that shares a Memcached cache
with clients written in other languages, keep this distinction in mind. Only
the values you save as strings will be readable by clients who don’t speak
English.

http://code.google.com/p/memcached/wiki/Clients

Always keep in mind that Memcached data can be discarded at the server’s
discretion. The cache is intended to speed up processes by storing results
that are time-consuming to recompute. It’s not meant to store information
that can’t be reconstructed from other sources! If the previous instructions
were executed against a busy enough Memcached, and enough time had
passed between the set() and get() operations, the get() action could readily
detect that the string had expired from the cache and was no longer there.
The fundamental approach for using Memcached from Python is shown in
Listing 8-1. This code examines Memcached to determine if the answer is
already saved in the cache before doing a (artificially) expensive integer-
squaring operation. If this is the case, the solution can be returned right
away without having to be recalculated. If it isn’t already computed and
saved in the cache, it is before being returned.

Listing 8-1. Using Memcached to Speed Up a Time-Intensive Process
#!/usr/bin/env python3
Programming in Python: The Basics
Using memcached to cache expensive results.
import memcache, random, time, timeit
def compute_square(mc, n):
value = mc.get(‘sq:%d’ % n)
if value is None:
time.sleep(0.001) # pretend that computing a square is
expensive
value = n * n
mc.set(‘sq:%d’ % n, value)
return value

def main():
mc = memcache.Client([‘127.0.0.1:11211’])
def make_request():
compute_square(mc, random.randint(0, 5000))
print(‘Ten successive runs:’)
for i in range(1, 11):
print(‘ %.2fs’ % timeit.timeit(make_request, number=2000),
end=’’)
print()

if __name__ == ‘__main__’:

main()

For this example to work, the Memcached daemon must be running on your
machine and listening on port 11211.
Of course, the programme will operate at its normal pace for the first few
hundred requests; however, when it asks for the square of a certain number
for the first time, it will find it absent from the RAM cache and will have to
compute it instead. However, when the programme runs and encounters the
same integers over and over, it will begin to speed faster as it discovers
squares that are still in the cache from the last time it saw that integer.
The software should exhibit a significant speedup after a few thousand
queries selected from the domain of 5,000 potential input integers. The
tenth batch of 2,000 squares on my machine is more than six times faster
than the first batch.
$ python squares.py

Ten successive runs:
2.89s 2.14s 1.55s 1.20s 0.97s 0.79s 0.64s 0.51s 0.49s 0.44s

This pattern is typical of caching in general. As the cache learns enough
keys and values, the runtime improves progressively, but as Memcached
fills and the % coverage of the input domain hits its maximum, the rate of
improvement slows.
What kind of data would you want to write to the cache in a real
application?
Many programmers just cache the lowest level of expensive call, such as
database searches, filesystem reads, or external service queries. It’s
frequently simple to figure out which items can be cached for how long
without causing information to become out-of-date at this level And if the
value of a database record changes, the cache may be purged ahead of time
of any stale objects associated with the new value. However, caching
intermediate outputs at higher levels of the application, such as data
structures, snippets of HTML, or even full web pages, can have a lot of
utility. A cache hit avoids not just the cost of accessing the database, but
also the cost of converting the result into a data structure and finally into
rendered HTML.
There are numerous nice introductions and in-depth instructions linked
from the Memcached site, as well as a fairly extensive FAQ; it’s as if the

Memcached developers have learned that catechism is the most effective
approach to teach people about their service.
To begin with, keys must be unique, thus developers frequently employ
prefixes and encodings to distinguish between the various types of objects
they are storing. User:19, mypage:/node/14, and even the full body of a
SQL query are frequently used as keys. Although keys can only be 250
characters long, you can get away with lookups that support longer strings
if you use a strong hash function. By the way, values in Memcached can be
longer than keys but are restricted to 1MB in size.
Second, always keep in mind that Memcached is a cache. It’s ephemeral,
stores data in RAM, and if you restart it, it forgets everything you’ve ever
saved! If the cache is lost, your application should always be able to restore
and reconstruct all of its data.
Third, ensure that your cache does not return data that is too old to deliver
to your users appropriately.
The definition of “too old” is largely dependent on the problem domain. A
bank balance should probably be kept up to date, yet “today’s top headline”
on a news site’s front page can be a few minutes old.
There are three techniques to dealing with stale data and ensuring that it is
cleaned away and not returned indefinitely after its useful shelf life has
passed.

You can define an expiration date and time on each item you put in the
cache, and Memcached will take care of silently dropping these
objects when the time comes.
If you have a means to map from the identification of a piece of
information to all of the keys in the cache that could conceivably have
included it, you can reach in and actively invalidate individual cache
entries the instant they become invalid.
Instead of eliminating incorrect entries, you can rewrite and replace
them, which works well for entries that are struck dozens of times per
second. Rather of all of those clients discovering the missing entry and
attempting to recompute it at the same time, they discover the changed
entry there instead.

Decorators are a common technique to add caching in Python since they
surround function calls without affecting their names or signatures, as you
might expect. There are various decorator cache libraries that can use
Memcached that can be found in the Python Package Index.

Hashing and Sharding
Memcached’s design exemplifies a key notion that may be found in a
variety of other databases and that you might wish to incorporate into your
own architecture. When a Memcached client is presented with a list of
Memcached instances, it will shard the database by hashing each key’s
string value and allowing the hash determine which server in the
Memcached cluster is used to store that key.
Consider a specific key-value combination, such as the key sq:42 and the
value 1764, that Listing 8-1 might store. The Memcached cluster wants to
store this key and value exactly once to make the most of the RAM it has
available. However, in order to keep the service running quickly, it wants to
avoid duplication by avoiding any coordination between the many servers
or communication between all of the customers.
This means that without any more information beyond the key and the list
of Memcached servers with which they are configured, all of the clients will
need a scheme to figure out where that piece of information belongs. If they
fail to make the same conclusion, the key and value may be replicated to
many servers, reducing the overall memory available, and a client’s attempt
to remove an invalid item may leave other invalid copies elsewhere.
The answer is for all clients to use the same, stable process to convert a key
into an integer n that selects one of the servers from their list. They
accomplish this by employing a “hash” method, which combines the bits of
a string while producing a number, obliterating any patterns in the string.
Consider Listing 8-2 to see why key value patterns must be eliminated. It
loads an English dictionary (you may need to download your own
dictionary or change the path to make the script work on your machine) and
investigates how those words would be spread across four servers if they
were used as keys.

Listing 8-2. There are two approaches of assigning data to servers: Bits
from a Hash and Patterns in the Data
#!/usr/bin/env python3

Programming in Python: The Basics

Hashes are a great way to divide work.

import hashlib

def alpha_shard(word):

“””Do a poor job of assigning data to servers by using first

letters.”””

if word[0] < ‘g’: # abcdef

return ‘server0’

elif word[0] < ‘n’: # ghijklm

return ‘server1’

elif word[0] < ‘t’: # nopqrs

return ‘server2’

else: # tuvwxyz

return ‘server3’

def hash_shard(word):

“””Assign data to servers using Python’s built-in hash()

function.”””

return ‘server%d’ % (hash(word) % 4)

def md5_shard(word):

“””Assign data to servers using a public hash algorithm.”””

data = word.encode(‘utf-8’)

return ‘server%d’ % (hashlib.md5(data).digest()[-1] % 4)

if __name__ == ‘__main__’:

words = open(‘/usr/share/dict/words’).read().split()

for function in alpha_shard, hash_shard, md5_shard:

d = {‘server0’: 0, ‘server1’: 0, ‘server2’: 0, ‘server3’: 0}

for word in words:

d[function(word.lower())] += 1

print(function.__name__[:-6])

for key, value in sorted(d.items()):

print(‘ {} {} {:.2}’.format(key, value, value / len(words)))

print()

The hash() function is Python’s built-in hash procedure, which is optimised
for speed because it is used to implement Python dictionary lookup

internally. Because it was created as a cryptographic hash, the MD5
algorithm is far more advanced. Although it is no longer considered secure,
it can be used to distribute load across servers (albeit it is slower than
Python’s built-in hash). The results clearly demonstrate the dangers of
attempting to disperse load using any way that could directly disclose your
data’s patterns.
$ python hashing.py
alpha
server0 35285 0.37
server1 22674 0.28
server2 29097 0.39
server3 12115 0.15

hash
server0 24768 0.25
server1 25004 0.25
server2 24713 0.25
server3 24686 0.25

md5
server0 24777 0.25
server1 24820 0.25
server2 24717 0.25
server3 24857 0.25

You can see that dividing load by initial letters, with nearly equal numbers
of letters assigned to each of four bins, results in server 0 receiving more
than three times the load of server 3, but having only six letters instead of
seven! The hash routines, on the other hand, were both champions. Despite
the strong patterns that characterise not only the first letters of English
words, but also their entire structure and endings, the hash functions evenly
distributed the words over these four imaginary servers.
Though many data sets aren’t as skewed as English word letter
distributions, sharded databases like Memcached must always deal with the
appearance of patterns in their input data.
The employment of keys that always began with a similar prefix and were
followed by characters from a restricted alphabet: the decimal digits, for
example, was not rare. Because of these clear patterns, sharding should
always be done with a hash function.

Of course, when using a database system like Memcached, whose client
libraries allow sharding internally, this is an implementation issue that you
may easily overlook. However, if you ever need to create your own service
that assigns work or data to nodes in a cluster in a way that is repeatable
across multiple clients of the same data store, you’ll find the same concept
handy in your own code.

Message Queues
Because, as you saw in Chapter 2, the idea of a datagram is particular to
unreliable services where data can be lost, duplicated, or reordered by the
underlying network, message queue protocols allow you to deliver
dependable pieces of data called messages instead of datagrams. A message
queue often guarantees to send messages consistently and atomically: a
message either comes entire and intact, or it does not arrive at all. The
message queue protocol itself does the framing. Your message queue clients
will never have to loop and keep calling recv() until the entire message has
arrived.
The additional benefit of message queues is that, rather than providing
solely point-to-point connections as is allowed with an IP transport like
TCP, they allow you to create a variety of topologies between messaging
clients. Message queues can be used for a variety of purposes.

When you use your email address to sign up for an account on a new
website, the site usually responds right away with a page that says
“Thank you, please watch your inbox for a confirmation e-mail,”
rather than making you wait the several minutes it might take the site
to reach your e-mail service provider to deliver it. The site usually
does this by saving your email address in a message queue, from
which back-end servers can retrieve it when they’re ready to try a new
outgoing SMTP connection (Chapter 13). If a delivery attempt fails
for some reason, your e-mail address can simply be re-entered into the
queue with a longer wait for a later retry attempt.
Message queues can be the foundation for a custom remote procedure
call (RPC) service (see Chapter 18), a design in which busy front-end
servers offload onerous work by sending requests to a message queue

containing dozens or hundreds of back-end servers After that, you’ll
have to wait for an answer.
High-volume event data that needs to be aggregated or centrally
stored and evaluated is frequently sent via a message queue as tiny
efficient messages. This has completely replaced both on-machine
logging to local hard drives and previous log transmission
technologies such as syslog at some sites.

The capacity to mix and match entire populations of clients and servers, or
publisher and subscriber processes, by having them all attach to the same
messaging fabric, is the characteristic of a message queue application
design.
Using message queues can result in a significant change in the way you
create applications. A single thread of control might flow from reading
HTTP data from a socket to authenticating and interpreting the request to
using an API to do bespoke image processing and lastly to writing the result
to disc in a typical monolithic programme. Every API utilised by that single
control thread must be installed on a single system and loaded into a single
Python runtime instance. However, once you have message queues in your
toolset, you may wonder why something as intensive, specialised, and web-
agnostic as image processing should share the CPU and disc drive with
your front-end HTTP service. You start pivoting toward single-purpose
machines organised into clusters that serve a single service, rather than
constructing services from big machines with dozens of heterogeneous
libraries installed. So long as operations understands the messaging
topology and the protocol for detaching a server without losing messages,
they can easily start taking down, upgrading, and reattaching the image
processing servers, for example, without even touching the load-balanced
pool of HTTP services that sit out in front of your message queue.
Message queues typically offer a variety of topologies.

A pipeline topology is the structure that most closely resembles the
image you have in your mind when you think of a queue: a producer
creates messages and sends them to a queue, from which they can be
received by a consumer. For example, the front-end web machines of a
photo-sharing website might receive end-user image uploads and place
them in an internal queue. The queue might then be read by a machine

room full of thumbnail generators, with each agent receiving one
message at a time carrying the image for which it should generate
many thumbnails. The queue may grow long during peak hours when
the site is busy, then shorten or empty during off-peak hours, but in
either case, the front-end web servers are freed to respond quickly to
the waiting customer, informing them that their upload was successful
and that their image would appear in their photo stream shortly.
A publisher-subscriber or fanout topology resembles a pipeline, but
with one important distinction. While the pipeline ensures that each
queued message is sent to only one consumer—it would be inefficient
to allocate the same photograph to two thumbnail servers—subscribers
often wish to get all of the messages queued by the publishers.
Subscribers can also provide a filter that limits their interest to
messages in a specific format. External services that need to push
events to the outside world can use this type of queue. It can also be
used to create a fabric that a server room can use to advertise which
systems are up, which are down for maintenance, and which can even
publish the addresses of other message queues as they are built and
deleted.
Finally, because communications must go round-trip, the request-reply
pattern is the most complicated. Both of the previous designs gave the
message producer relatively little responsibility: the producer connects
to the queue and transmits its message, and that’s all. A message
queue client that sends a request, on the other hand, must stay
connected and wait for the response. To accomplish this, the queue
must have some form of addressing method that allows responses to
be sent to the correct client, possibly among thousands of connected
clients, who is still waiting for it. This is, however, the most potent
pattern of all, despite its underlying intricacy. It distributes the burden
of dozens or hundreds of clients across a huge number of servers with
no work other than setting up the message queue. . Because a good
message queue lets servers to attach and detach without losing
messages, this topology also enables servers to be taken down for
maintenance while being transparent to the client workstations.

Request-reply queues are an excellent method to connect lightweight
workers that can run in the hundreds on a single machine—for example, the

threads of a web server front end—to database clients or file servers that are
occasionally called in to undertake heavier work on behalf of the front end.
The request-reply pattern is a natural fit for RPC techniques, and it comes
with a bonus that simpler RPC systems don’t normally provide: That is, in a
fan-in or fan-out work pattern, several consumers or producers can all be
assigned to the same queue without either group of clients knowing.

Using Python’s Message Queues
Stand-alone servers are used to implement the most popular message
queues. All of the various activities you select to build your application
from—producers, consumers, filters, and RPC services—can then connect
to the message queue without having to learn each other’s addresses or
identities. The AMQP protocol is one of the most extensively used
language-independent message queue protocols, and it is supported by a
variety of open source servers, including RabbitMQ, the Apache Qpid
server, and others.
Many programmers never learn how to use a message protocol. Instead,
they rely on third-party libraries that bundle the benefits of a message queue
into an API for easy consumption. Instead of learning AMQP, many Python
programmers who use the Django web framework, for example, utilise the
popular Celery distributed task queue. By supporting various back-end
services, a library can also provide protocol independence. Instead of a
dedicated messaging system, Celery allows you to use the simple Redis
key-value store as your “message queue.”
For the purposes of this book, however, an example that does not
necessitate the installation of a full-fledged separate message queue server
is more convenient, so I will cover MQ, the Zero Message Queue, which
was created by the same company as AMQP but moves the messaging
intelligence from a centralised broker into each of your message client
programmes. To put it another way, embedding the MQ library in each of
your programmes allows your code to establish a message fabric on its own,
without the requirement for a centralised broker. This differs from an
architecture based on a central broker that can provide reliability,
redundancy, retransmission, and persistence to disc in a number of ways.
On the MQ website, there is an excellent description of the benefits and
drawbacks:

www.zeromq.org/docs:welcome-from-amqp.

Listing 8-3, to keep the example in this section self-contained, takes on a
basic problem that doesn’t require a message queue: determining the value
of p using a straightforward, if inefficient, Monte Carlo method. Figure 8-1
depicts the message structure, which is the most significant aspect. A
bitsource procedure generates 2n-character strings of ones and zeros. The
odd bits will be used as an n-digit integer x coordinate, whereas the even
bits will be used as an n-digit integer y coordinate. Is this point inside or
outside the quarter-circle centred on the origin, the radius of which is the
largest value that either of these numbers can take?

Figure 8.1: The topology of the simple Monte Carlo estimate of pi.

You create an audience of two listeners for these binary strings using a
publish-subscribe topology. Because your two coordinates both start with
the digit zero, the point must reside in the lower-left quadrant of the field
and so fall safely inside the circle, the always yes listener will only receive
digit strings starting with 00 and can thus always push the answer Y. The
judge function that performs the genuine test, on the other hand, must
process the other three possible patterns for the first two bits. It must ask
Pythagoras to compute the sum-of-squares of the two integer coordinates to
determine if the point they’ve named is within or outside the circle, and
then send T or F to its outgoing queue.

.

http://www.zeromq.org/docs:welcome-from-amqp

The tally method at the bottom of the topology receives either the T or F
created for each generated random bit pattern, and it estimates the value of
p by comparing the number of T replies to the total number of T and F
answers combined. If you’re wondering about the arithmetic, look up monte
carlo estimate of pi on the internet.
This five-worker architecture is implemented in Listing 8-3, which runs for
30 seconds before exiting the programme.
It necessitates MQ, which you can make available to Python by first
creating a virtual environment and then typing:
$ pip install pyzmq

If you’re using an operating system that comes with packaged Python or a
standalone Python installation like Anaconda, this package may already be
installed. In either instance, Listing 8-3 will be able to execute without an
import error right out of the box.

Listing 8-3. A ØMQ Messaging Fabric connecting Five Different Workers
#!/usr/bin/env python3
Programming in Python: The Basics
Small application that uses several different message queues
import random, threading, time, zmq
B = 32 # number of bits of precision in each random integer
def ones_and_zeros(digits):
“””Express `n` in at least `d` binary digits, with no special
prefix.”””
return
bin(random.getrandbits(digits)).lstrip(‘0b’).zfill(digits)

def bitsource(zcontext, url):
“””Produce random points in the unit square.”””
zsock = zcontext.socket(zmq.PUB)
zsock.bind(url)
while True:
zsock.send_string(ones_and_zeros(B * 2))
time.sleep(0.01)

def always_yes(zcontext, in_url, out_url):
“””Coordinates in the lower-left quadrant are inside the unit
circle.”””

isock = zcontext.socket(zmq.SUB)
isock.connect(in_url)
isock.setsockopt(zmq.SUBSCRIBE, b’00’)
osock = zcontext.socket(zmq.PUSH)
osock.connect(out_url)
while True:
isock.recv_string()
osock.send_string(‘Y’)

def judge(zcontext, in_url, pythagoras_url, out_url):
“””Determine whether each input coordinate is inside the unit
circle.”””
isock = zcontext.socket(zmq.SUB)
isock.connect(in_url)
for prefix in b’01’, b’10’, b’11’:
isock.setsockopt(zmq.SUBSCRIBE, prefix)
psock = zcontext.socket(zmq.REQ)
psock.connect(pythagoras_url)
osock = zcontext.socket(zmq.PUSH)
osock.connect(out_url)
unit = 2 ** (B * 2)
while True:
bits = isock.recv_string()
n, m = int(bits[::2], 2), int(bits[1::2], 2)
psock.send_json((n, m))
sumsquares = psock.recv_json()
osock.send_string(‘Y’ if sumsquares < unit else ‘N’)

def pythagoras(zcontext, url):
“””Return the sum-of-squares of number sequences.”””
zsock = zcontext.socket(zmq.REP)
zsock.bind(url)
while True:
numbers = zsock.recv_json()
zsock.send_json(sum(n * n for n in numbers))

def tally(zcontext, url):
“””Tally how many points fall within the unit circle, and
print pi.”””
zsock = zcontext.socket(zmq.PULL)

zsock.bind(url)
p = q = 0
while True:
decision = zsock.recv_string()
q += 1
if decision == ‘Y’:
p += 4
print(decision, p / q)

def start_thread(function, *args):
thread = threading.Thread(target=function, args=args)
thread.daemon = True # so you can easily Ctrl-C the whole
program
thread.start()

def main(zcontext):
pubsub = ‘tcp://127.0.0.1:6700’
reqrep = ‘tcp://127.0.0.1:6701’
pushpull = ‘tcp://127.0.0.1:6702’
start_thread(bitsource, zcontext, pubsub)
start_thread(always_yes, zcontext, pubsub, pushpull)
start_thread(judge, zcontext, pubsub, reqrep, pushpull)
start_thread(pythagoras, zcontext, reqrep)
start_thread(tally, zcontext, pushpull)
time.sleep(30)

if __name__ == ‘__main__’:
main(zmq.Context())

Because it is not safe for two threads to share a single message socket, each
of these threads takes care to build its own socket or sockets for
communication. The threads do, however, share a single context object,
which ensures consistency. They’re all contained within a shared arena of
URLs, messages, and queues. Normally, you’ll want to Per process, only
one MQ context should be created.
Despite the fact that these sockets have methods with names that are similar
to well-known socket operations like recv () Keep in mind that the
meanings of send() and send() are not the same. Messages are always stored
in chronological order and never duplicated, however Instead of becoming
lost in a continuous stream, they are neatly demarcated as individual
messages.

This example is obviously contrived so that you can use most of the
primary messaging patterns supplied by a regular queue in only a few lines
of code. Always yes and the judge establish connections to the bitsource,
forming a publish-subscribe system in which each connected client receives
a copy of every message issued by the publisher (minus, in this case, any
messages that wind up being filtered out). By opting in to every message
whose initial few digits match the filter string, each filter applied to a MQ
socket adds, not subtracts, to the overall number of messages received.
Because one of their four filters includes every possible combination of two
leading binary digits, your pair of subscribers are guaranteed to receive
every bit string produced by bitsource.
The judge-pythagoras relationship is a conventional RPC request-and-
response relationship, in which the client holding the REQ socket must
speak first in order to assign its message to one of the waiting agents tied to
its socket. (Of course, just one agent is linked in this scenario.) Behind the
scenes, the messaging fabric adds a return address to the request. When the
agent is through with its task and responds, the return address can be used
to send the response over the REP socket to the relevant client.
Finally, the tally worker shows how a push-pull arrangement ensures that
each item pushed is received by one, and only one, of the agents connected
to the socket; if you started up several tally workers, each new datum from
upstream would arrive at only one of them, and they would all converge on
p separately.
This listing, unlike all of the previous socket programming examples in this
book, does not have to be concerned with whether bind() or connect() is
called first! This is a MQ feature that uses timeouts and polling to keep
retrying a failed connect() behind the scenes in the event that the endpoint
represented by the URL becomes available later. This makes it resistant to
agents entering and exiting an application while it is executing.
When run, the resulting system of workers can compute p to roughly three
digits on my laptop by the time it exits.
$ python queuepi.py
...
Y 3.1406089633937735

This short example may make MQ programming appear unduly
straightforward. In real life, you’ll want more complicated patterns than the

ones supplied here to ensure message delivery, persist them if they can’t be
processed yet, and perform flow management to ensure that a sluggish
agent isn’t overwhelmed by the quantity of messages queued and waiting
for it. Extended talks of how to apply these patterns for a production service
may be found in the official documentation. In the end, many programmers
find that using a full-fledged message broker behind Celery, such as
RabbitMQ, Qpid, or Redis, offers them the assurances they desire with the
least amount of labour and risk of making mistakes.

Conclusion
In today’s environment, serving thousands or millions of consumers has
become a common task for application developers. Several essential
technologies have arisen to assist them in achieving this size, and they are
all easily accessible from Python.
Memcached is a popular service that combines all of the free RAM on all of
the servers where it is deployed into a single huge LRU cache. Memcached
can relieve a significant amount of strain from your database or other back-
end storage if you have a system in place for invalidating or replacing
entries that get out of date—or if you’re dealing with data that can be
expired on a fixed, predictable timetable. It can be inserted at a variety of
points throughout your workflow. Instead of caching the result of a time-
consuming database query, it may be preferable to merely cache the web
widget that is eventually presented.
Message queues are another common mechanism for coordinating and
integrating various portions of your application, which may require
different hardware, load balancing strategies, platforms, or even
programming languages. They can distribute messages to a large number of
waiting consumers or servers in a way that is impossible with the single
point-to-point links provided by standard TCP sockets, and they can also
use a database or other persistent storage to ensure that messages are not
lost if the server fails. Message queues also provide resilience and
flexibility because, if a bottleneck occurs in one component of your system,
the message queue can absorb the impact by allowing more messages to
queue up for that service. The message queue design hides the population of
servers or processes that serve a specific type of request, making it simple

to disconnect, upgrade, reboot, and rejoin servers without disrupting the rest
of your infrastructure.
Message queues are commonly used by programmers behind a more user-
friendly API, such as the Celery project, which is popular in the Django
community. Redis can also be used as a backend. Redis needs your
attention, even though it isn’t discussed in this chapter.
After you’ve gone through these basic and specific technologies built on top
of IP/TCP, you’ll move on to the HTTP protocol, which implements the
World Wide Web, in the next three chapters.

CHAPTER 9
HTTP Clients

This is the first of three HTTP chapters. The design and deployment of
HTTP servers will be discussed in Chapter 10. In both chapters, the
protocol will be examined in its most basic conceptual form, that is, as a
mechanism for retrieving or uploading documents.
While HTTP can transport a variety of documents, including photos, PDFs,
music, and video, Chapter 11 focuses on the type of document that has
made HTTP and the Internet famous: the web page. The World Wide Web
is a collection of hypertext texts that are connected together thanks to the
creation of the URL, which is also covered in Chapter 11. There, you’ll
learn about template libraries, forms, and Ajax-enabled programming
patterns, as well as web frameworks that strive to bring all of these patterns
together in an easy-to-program manner.
RFCs 7230–7235 specify HTTP version 1.1, the most prevalent version in
use today, to which you should refer if the wording of these chapters seems
confused or leaves you wanting to know more. You can read Chapter 5 of
Roy Thomas Fielding’s famous PhD dissertation “Architectural Styles and
the Design of Network-based Software Architectures” for a more technical
introduction to the idea underlying the protocol’s design.
For the time being, your adventure will begin here, where you will learn
how to query a server and receive documents as a response.

Structure
Python Client Libraries
Framing, Encryption, and Ports
Methods
Hosts and Paths
Status Codes

Validation and Caching
Encoding of Content
Negotiation of Content
Type of Content
Authentication over HTTP
Cookies
Keep-Alive, Connections, and httplib
Conclusion

Objectives:
In this chapter, you’ll learn how to use the protocol as a client application
that wants to fetch and cache documents as well as maybe submit queries or
data to the server. You will learn the protocol’s rules as a result of this
approach.

Python Client Libraries
The HTTP protocol and the vast data resources it makes available are
perennially attractive topics among Python programmers, as seen by a long
line of third-party clients claiming to do a better job than the urllib included
in the Standard Library.
Today, however, a single third-party solution stands alone, having not only
swept the field of competitors but also supplanted urllib as the go-to tool for
Python programmers who need to communicate over HTTP.
Requests, built by Kenneth Reitz and powered by Andrey Petrov’s urllib3
connection pooling logic, is the library in question.
You’ll return to both urllib and Requests as you learn about HTTP in this
chapter to examine what they do well and what they don’t when faced with
each HTTP feature. Their basic interfaces are very similar: they give a
callable that establishes an HTTP connection, sends a request, and waits for
the response headers before delivering a response object that displays them
to the programmer. The body of the answer is queued on the incoming
socket and only read when the programmer requests it.

In most of the examples in this chapter, I’ll be testing the two HTTP client
libraries against http://httpbin.org, a small test web site built by Kenneth
Reitz that you can run locally by installing it using pip and then running it
inside a WSGI container like Gunicorn (see Chapter 10). Simply type the
following to run it on localhost port 8000 so you may try the examples in
this chapter on your own machine without having to go to httpbin.org’s
public version:
$ pip install gunicorn httpbin requests
$ gunicorn httpbin:app

You should then be able to use both urllib and Requests to fetch one of its
pages to see how their interfaces are similar at first appearance.
>>> import requests
>>> r = requests.get(‘http://localhost:8000/headers’)
>>> print(r.text)
{
“headers”: {
“Accept”: “*/*”,
“Accept-Encoding”: “gzip, deflate”,
“Host”: “localhost:8000”,

“User-Agent”: “python-requests/2.3.0 CPython/3.4.1
Linux/3.13.0-34-generic”
}

}
>>> from urllib.request import urlopen
>>> import urllib.error
>>> r = urlopen(‘http://localhost:8000/headers’)
>>> print(r.read().decode(‘ascii’))
{
“headers”: {
“Accept-Encoding”: “identity”,
“Connection”: “close”,
“Host”: “localhost:8000”,
“User-Agent”: “Python-urllib/3.4”
}

}

Two distinctions can already be seen, and they serve as a good forecast of
what is to come later in this chapter. Requests declares up front that it

http://httpbin.org/

supports gzip and deflate-compressed HTTP responses, whereas urllib is
completely unaware of these formats. Furthermore, although Requests was
able to determine the proper decoding to convert this HTTP response from
raw bytes to text, the urllib library just returned bytes and left you to decode
them.
Other attempts at strong Python HTTP clients have been made, with many
of them attempting to be more browser-like. These wanted to move beyond
the HTTP protocol taught in this chapter and start talking about ideas you’ll
learn about in Chapter 11, combining the structure of HTML, the semantics
of its forms, and the rules of what a browser should do when you submit a
form. For example, the library mechanise was popular for a while.
Finally, web pages are frequently too sophisticated to interact with anything
less than a full browser, as forms are frequently only valid today due to
annotations or alterations done by JavaScript. Many current forms don’t
even have a physical Submit button, instead relying on a script to complete
their tasks. Browser control technologies have proven to be more beneficial
than mechanise, and I discuss a few of them in Chapter 11.
The purpose of this chapter is to help you understand HTTP and how many
of its functions are accessible through Requests and urllib, as well as the
restrictions within which you will work if you use the urllib package
included in Standard Library instead. If you ever find yourself in a scenario
where you can’t install third-party libraries but still need to conduct
complex HTTP operations, you should review not only the urllib library’s
documentation but also the following two resources: its entry for Python
Module of the Week, as well as the HTTP chapter in the online Dive Into
Python book.
http://pymotw.com/2/urllib2/index.html#module-urllib2
These materials were both produced in the days of Python 2, thus they refer
to the library as urllib2 rather than urllib.request, but they should still serve
as a basic introduction to urllib’s clumsy and out-of-date object-oriented
design.

Framing, Encryption, and Ports
For plain-text HTTP chats, port 80 is the standard port. Port 443 is the
standard port for clients who want to start an encrypted TLS discussion first

(see Chapter 6) and then speak HTTP only after the encryption is
established—a variation of the protocol known as Hypertext Transfer
Protocol Secure (HTTPS). HTTP is spoken just as it would be over an
unencrypted socket inside the encrypted channel.
As you’ll see in Chapter 11, the user’s choice between HTTP and HTTPS,
as well as between a standard and a nonstandard port, is usually expressed
in the URLs that they create or are provided.
Remember that the goal of TLS is to verify the identity of the server to
which the client is connecting (and, if a client certificate is supplied, to
allow the server to validate the client’s identity in return). Never use an
HTTPS client that doesn’t verify that the server’s certificate matches the
hostname to which the client is trying to connect. This is something that all
of the clients in this chapter do.
The client talks first in HTTP, submitting a request that names a document.
After the full request has been sent over the wire, the client waits for a
complete response from the server, which either signals an error condition
or offers information about the content the client has requested. The client
is not allowed to send a second request over the same connection until the
response is complete, at least in the HTTP/1.1 version of the protocol that is
widely used today.
The request and answer employ the same formatting and framing standards,
which is a key symmetry built into HTTP. Here’s an example request and
response that you may use as a guide as you read the protocol description
that follows:
GET /ip HTTP/1.1
User-Agent: curl/7.35.0
Host: localhost:8000
Accept: */*
HTTP/1.1 200 OK
Server: gunicorn/19.1.1
Date: Sat, 21 Sep 2020 00:18:00 GMT
Connection: close
Content-Type: application/json
Content-Length: 27
Access-Control-Allow-Origin: *
Access-Control-Allow-Credentials: true

{
“origin”: “127.0.0.1”

}

The request is the text block that starts with GET. The response starts with
the HTTP/1.1 version and continues with the three lines of JSON text below
the headers on a blank line. The standard refers to both the request and the
answer as HTTP messages, and each message is made up of three elements.

A first line in the request that names a method and document, and a
return code and description in the response. A carriage return and
linefeed (CR-LF, ASCII codes 13 and 10) mark the end of the line.
A name, a colon, and a value are contained in one or more headers.
Because header names are case-insensitive, a client or server can
uppercase them anyway they like. A CR-LF is at the conclusion of
each header. The entire list of headers is then terminated by a blank
line—the four bytes CR-LF-CR-LF that constitute a pair of end-of-
line sequences with nothing in between.
An optional body that immediately follows the blank line that ends the
headers, regardless of whether any headers appear above it. As you
shall see momentarily, there are numerous choices for framing the
object.

The first line and headers are each framed by their CR-LF sequences at the
conclusion, and the entire assembly is framed as a whole by the blank line
at the end. So a server or client can find the end by executing recv() until
the four-character sequence CR-LF-CR-LF appears. Because there is no
indication of how lengthy the line and headers might be, many servers set
reasonable length limits to avoid running out of RAM when a troublemaker
connects and sends infinite-length headers.
If a body has been connected to the message, you have three possibilities
for framing it.
The presence of a Content-Length header, whose value should be a decimal
number indicating the length of the body in bytes, is the most frequent
framing. This is simple enough to put into practise. The client can simply
repeat the recv() operation until the total number of bytes equals the
specified length. When data is generated dynamically, however, specifying

a Content-Length is not always possible, because the length of the data
cannot be determined until the process is complete.
If the headers provide “chunked” as the Transfer-Encoding, a more
sophisticated technique is enabled. Instead than having the length of the
body given up front, it is provided in a number of smaller sections, each of
which is prefixed by its own length. Each chunk has at least a hexadecimal
(as opposed to the decimal Content-Length header!) length field, the two
characters CR-LF, and a block of data of exactly the given length, again the
two characters CR-LF. The chunks come to a close with a final chunk that
states it has zero length—at the very least, the digit zero, a CR-LF, and then
another CR-LF.
The sender can put a semicolon after the chunk length but before the CR-
LF, and then specify a “extension” option for that chunk. The sender can
append a few final HTTP headers after the last chunk has supplied its length
of zero and its CR-LF. If you’re implementing HTTP yourself, you may
look up these specifics in RFC 7230.
The server can also provide “Connection: close,” send as much or as little
body as it wishes, and then close the TCP socket as an alternative to
Content-Length. This increases the risk that the client will not be able to tell
whether the socket closed because the entire body was successfully
delivered or because the socket closed prematurely due to a server or
network error, and it also reduces the protocol’s efficiency by requiring the
client to reconnect for each request.
(According to the standard, the client cannot use the “Connection: close”
trick since it will not be able to receive the server’s response.) Hadn’t they
heard of a unidirectional shutdown() on the socket, which would allow the
client to terminate its direction while still receiving data from the server?).

Methods
An HTTP request’s first word indicates the action that the client wants the
server to perform. For servers that want to expose a full document API to
other computer programmes that may be accessing them (usually,
JavaScript that they have supplied to a browser), there are two common
ways, GET and POST, plus a number of less common methods described.

HTTP’s basic “read” and “write” activities are provided through the two
basic methods, GET and POST.
When you type an HTTP URL into your web browser, the GET method is
used to request that the document named by the request path be sent as the
server’s response. It can’t have a body in it. Servers cannot, under any
circumstances, allow clients to edit data using this approach, according to
the standard. Any path parameters (see Chapter 11 for more information on
URLs) can only affect the document that is being returned, such as?
q=python or?results=10, and cannot request that modifications be made on
the server. The restriction that GET cannot modify data allows a client to
safely retry a GET if the first attempt fails, allows GET responses to be
cached (you’ll learn more about caching later in this chapter), and allows
web scraping programmes (see Chapter 11) to visit as many URLs as they
want without fear of creating or deleting content on the sites they’re
traversing.
When a client wants to send fresh data to the server, they utilise POST.
Traditional online forms normally use POST to deliver your request if they
don’t just copy your form fields into the URL. POST is also used by
developer-oriented APIs to submit new documents, comments, and database
rows. Because repeating the same POST may lead the server to conduct an
action twice, such as making a second $100 payment to a merchant, the
results of a POST cannot be cached for future repeats, nor can a POST be
automatically retried if the response does not arrive.
The remaining HTTP methods can be divided into two groups: those that
are similar to GET and those that are similar to POST. OPTIONS and
HEAD are methods similar to GET. The OPTIONS method determines
which header values are compatible with a given path, while the HEAD
method instructs the server to begin the process of preparing to transmit the
resource but then halt and only transmit the headers. This allows a client to
validate things like ContentType without having to download the entire
body.
PUT and DELETE are similar to POST in that they are anticipated to make
potentially irreversible changes to the content stored on the server. As their
names suggest, PUT requests the server to create a new document that will
live at the path specified in the request, whereas DELETE requests the
server to delete the path and any content associated with it. Interestingly,

while requesting “writes” of the server content, these two methods are safe
in a way that POST is not: they are idempotent and can be retried as many
times as the client desires because the result of running either of them once
should be the same as running them many times.
Finally, the standard specifies a debugging method TRACE as well as a
method CONNECT for switching protocols to something other than HTTP
(which, as you’ll see in Chapter 11, is used to turn on WebSocket).
They are, however, infrequently utilised, and in neither case do they have
anything to do with document delivery, which is HTTP’s primary function,
which you will learn about in this chapter. More information about them
can be found in the standard.
It’s worth noting that urlopen() in the Standard Library chooses its HTTP
verb invisibly: POST if the caller specifies a data parameter, or GET
otherwise. This is a regrettable decision because proper HTTP verb usage is
critical for secure client and server design. For two essentially distinct
methods, the Requests choice of get() and post() is considerably superior.

Hosts and Paths
The initial versions of HTTP allowed only a verb and a route to be included
in the request.
GET /html/rfc7230

This worked fine in the early days when each server only housed one web
site, but it broke down when administrators tried to build massive HTTP
servers capable of serving dozens or hundreds of sites. How could the
server predict which hostname the user had placed in the URL given only a
path—especially for a path like /, which is seen on almost every website?
Making at least one header, the Host header, necessary was the solution. In
modern versions of the protocol, the protocol version is also included in a
minimally correct request, which would look like this:
GET /html/rfc7230 HTTP/1.1
Host: tools.ietf.org

Unless the client provides at least a Host header identifying which
hostname was used in the URL, many HTTP servers may report a client
error. In the absence of it, the consequence is frequently a 400 Bad Request.

More information about error codes and their meanings can be found in the
section below.

Status Codes
The response line, unlike the request line, begins with the protocol version
rather than finishing with it, and then provides a standard status code before
closing with an informal written explanation of the status for display to the
user or entry into a log file. When everything goes smoothly, the status code
is 200, and the response line looks something like this:
HTTP/1.1 200 OK

Because the text after the code is just informal, a server may substitute OK
for Okay, Yippee, or It Worked, or even text that had been internationalised
for the country in which the server was located.
RFC 7231, in instance, specifies almost two dozen return codes for both
general and specific scenarios. If you need to learn the entire list, consult
the standard. The 200s denote success, the 300s redirection, the 400s show
that the client request is incoherent or illegal, and the 500s indicate that
something unexpected has gone wrong that is solely the server’s fault.
Only a few things in this chapter will affect you.

200 OK: The request has been completed successfully. If it was a
POST, it had the desired impact.
• 301; Permanently Moved: While the path is legitimate, it is not the
canonical path for the resource in question (though it may have been
in the past), and the client should instead request the URL indicated in
the response’s Location header. If the client wants to cache it, all
future requests can skip this old URL and go straight to the new one.
303; Other: The client can learn the result of this specific, one-of-a-
kind request by performing a GET against the URL indicated in the
response’s Location header. Any subsequent attempts to access this
resource will have to be made from this location. This status is critical
to the design of websites, as you’ll see in Chapter 11—any form
submitted correctly using POST should return 303, so the actual page
the client views is obtained using the safe, idempotent GET operation
instead.

304 Not Modified: Because the request headers indicate that the client
already has an up-to-date version of the document in its cache (see the
“Caching and Validation” section), the document body does not need
to be included in the response.
307 Temporary Redirect: Any request made by the client, whether
GET or POST, should be retried against the different URL indicated in
the response’s Location header. However, any subsequent attempts to
access this resource must be made from this location. This permits
forms to be delivered to a different address if a server is offline or
unavailable, for example.
400 Bad Request: The request appears to be an invalid HTTP request.
403 Forbidden: There is no password, cookie, or other identifying
data in the request that indicates to the server that the client has
authorization to access it (for both, see later in this chapter).
404 Not Found: The path does not refer to a resource that exists. This
is the most well-known exception code since customers never see the
200 code on their screen; instead, they see a document.
405 Method Not Allowed: Although the server recognises the method
and path, this method does not make sense when used with this path.
500 Server Error: This is a common error code. The server wishes to
complete the request, but is currently unable to do so due to an internal
problem.
501 Not Implemented: Your HTTP verb was not recognised by the
server.
502 Bad Gateway: The server is a gateway or proxy (see Chapter 10),
but it is unable to communicate with the server that should be
providing the response for this path.

While responses with 3xx status codes are not intended to have a body,
responses with 4xx and 5xx status codes are more likely to do so, providing
a human-readable description of the mistake. Unmodified error pages for
the language or framework in which the web server was created are often
the least helpful examples. More informative pages have frequently been
built by server authors to assist users or developers in resolving errors.

There are two crucial questions to ask about status codes when learning a
certain Python HTTP client.
The first question is whether a library follows redirects automatically. If
not, you’ll have to hunt down 3xx status codes and follow their Location
heading manually. While the Standard Library’s low-level httplib module
would force you to follow redirection manually, the urllib module will do it
for you in accordance with the standard. The Requests library performs the
same thing, but it also has a history attribute that details all of the redirects
that led you to the final destination.
>>> r = urlopen(‘http://httpbin.org/status/301’)
>>> r.status, r.url
(200, ‘http://httpbin.org/get’)
>>> r = requests.get(‘http://httpbin.org/status/301’)
>>> (r.status, r.url)
(200, ‘http://httpbin.org/get’)
>>> r.history
[<Response [301]>, <Response [302]>]

If you wish, you can also turn off redirection with a simple keyword
argument in the Requests library—a feat that is doable but considerably
more difficult with urllib.
>> r = requests.get(‘http://httpbin.org/status/301’,
... allow_redirects=False)
>>> r.raise_for_status()
>>> (r.status_code, r.url, r.headers[‘Location’])
(301, ‘http://localhost:8000/status/301’, ‘/redirect/1’)

If your Python software spends the effort to discover 301 failures and try to
avoid those URLs in the future, it will lessen the burden on the servers you
query. If your software has a persistent state, it may be able to cache 301
failures to prevent having to visit those pages again, or it may be able to
directly rewrite the URL wherever it is stored. If the URL was queried
interactively, you could print a nice message telling the user of the page’s
changed location.
The prefix www belongs at the front of the hostname you use to contact a
server is one of the most typical redirections.
>>> r = requests.get(‘http://google.com/’)
>>> r.url

‘http://www.google.com/’
>>> r = requests.get(‘http://www.twitter.com/’)
>>> r.url
‘https://twitter.com/’

Two well-known websites have taken opposing positions on whether or not
the www prefix should be included in their official hostname. They are,
however, willing to utilise a redirect in both circumstances to enforce their
desire and to avoid the confusion of their site appearing to reside at two
separate URLs. If your URLs are created from the wrong hostname, you’ll
end up executing two HTTP requests instead of one for every resource you
get unless your application is careful to learn these redirections and prevent
repeating them.
Another thing to look into with your HTTP client is how it notifies you if an
attempt to fetch a URL with a 4xx or 5xx status code fails. The Standard
Library urlopen() throws an exception for all such codes, making it
impossible for your code to mistakenly process an error page received from
the server as regular data.
>>> urlopen(‘http://localhost:8000/status/500’)
Traceback (most recent call last):
...
urllib.error.HTTPError: HTTP Error 500: INTERNAL SERVER ERROR

When urlopen() throws an exception, it’s unable to study the response’s
data. The answer can be found by looking at the exception object, which
serves as both an exception and a response object containing headers and a
body.
>>> try:
... urlopen(‘http://localhost:8000/status/500’)
... except urllib.error.HTTPError as e:
... print(e.status, repr(e.headers[‘Content-Type’]))
500 ‘text/html; charset=utf-8’

The Requests library presents an even more startling situation: even
incorrect status codes result in a response object being sent to the caller
without comment. The caller must either test the response’s status code or
volunteer to execute its raise for status() method, which will throw an
exception if the status code is 4xx or 5xx.
>>> r = requests.get(‘http://localhost:8000/status/500’)

>>> r.status_code
500
>>> r.raise_for_status()
Traceback (most recent call last):
...
requests.exceptions.HTTPError: 500 Server Error: INTERNAL
SERVER ERROR

If you’re concerned about having to remember to do a status check every
time you make a call request, don’t worry. obtain, then you might want to
consider building your own wrapper function that does the check for you.

Validation and Caching
HTTP has numerous well-designed techniques for allowing clients to avoid
repeated GETs of resources they frequently use, but they only work if the
server adds headers to the resource that allow them. Caching should be
considered by server authors and enabled whenever practical, as it
decreases network traffic and server stress while simultaneously allowing
client applications to function faster. All of these processes are described in
great detail in RFCs 7231 and 7232. This section merely tries to provide a
general overview.
When adding headers to enable caching, the most crucial question a service
architect may ask is whether two requests should actually return the same
page just because their paths are identical. Is there anything else about a
pair of requests that could lead to them returning two different resources? If
this is the case, a service must provide a Vary header in every response that
lists the other headers that the document’s content is dependent on. If the
designer is returning different documents to various users, Host, Accept-
Encoding, and notably Cookie are common possibilities.
There are many levels of caching that can be engaged once the Vary header
is set correctly.
Resources can be prohibited from being saved in a client cache at all,
preventing the client from making any form of nonvolatile storage copy of
the answer. The goal is to provide the user control over whether or not they
choose “save” to save a copy of the resource to disc.
HTTP/1.1 200 OK

Cache-control: no-store
...

If the server chooses to enable caching instead, it will almost always wish
to guard against the chance that the client will keep delivering the cached
copy of the resource every time the user requests it until it is completely
out-of-date. When a server is cautious to use a specific path only for a
single permanent version of a document or picture, it does not need to
worry about whether resources are cached indefinitely. If the version
number or hash at the end of the URL is incremented or modified each time
the designers release a new version of the corporate logo, for example, any
version of the logo can be sent with permission to store it forever.
The server can restrict the client copy of the resource from being used
indefinitely in two ways. For starters, it can define an expiration date and
time after which the resource can no longer be reused without a server
request.
HTTP/1.1 200 OK
Expires: Thu, 01 Dec 1999 16:00:00 GMT
...

However, using a date and time poses the risk that an erroneously set client
clock will cause the cached copy of the resource to be consumed for an
inordinate amount of time. The newer methodology of setting the number
of seconds that the resource can be cached once it has been received is a far
superior method, and it will function as long as the client clock is not just
blocked.
HTTP/1.1 200 OK
Cache-control: max-age=3600
...

The two headers displayed here give the client the unilateral authority to
keep utilising an old copy of a resource for a limited time without
consulting the server. But what if a server wants to keep the option of using
a cached resource or fetching a new version? In that instance, the client will
have to make an HTTP request to check back each time it wishes to utilise
the resource. This will be more expensive than allowing the client to use the
cached copy quietly and without a network activity, but it will save time
because the server will have to transmit a new copy of the resource if the
client’s only old copy is actually out-of-date.

There are two ways for a server to force a client to check back after each
use of a resource while allowing the client to reuse its cached copy of the
resource if possible. The standard refers to them as conditional requests
since they only result in the delivery of a body if the checks find that the
client cache is out-of-date.
The first mechanism necessitates the server’s knowledge of the most recent
resource modification. If the resources are backed by a file on the file
system, determining this is simple, but if the resources are taken from a
database table without an audit log or a date of last modification, it can be
difficult or impossible. The server can include the information in every
response if it is accessible.
HTTP/1.1 200 OK
Last-Modified: Tue, 15 Nov 1999 12:45:26 GMT
...

If a client wants to reuse a cached copy of the resource, it can save the date
and then send it back to the server the next time it needs it. If the server
determines that the resource has not changed since the client last got it, the
server can choose to provide only headers and the special status code 304
instead of a body.
GET / HTTP/1.1
If-Modified-Since: Tue, 15 Nov 1994 12:45:26 GMT
...
HTTP/1.1 304 Not Modified
...

Instead of modify time, the second approach deals with resource identity. In
this situation, the server requires a means to establish a unique tag for each
version of a resource that is guaranteed to change to a new unique value
every time the resource changes—checksums or database UUIDs are two
options. When the server constructs a response, it must include the tag in an
ETag header.
HTTP/1.1 200 OK
ETag: “d41d8cd98f00b204e9800998ecf8427e”
...

When a client that has cached and owns this version of the resource wishes
to reuse it to fulfil a user action, it can send a request to the server for the

resource, including the cached tag if it still refers to the current version of
the resource.
GET / HTTP/1.1
If-None-Match: “d41d8cd98f00b204e9800998ecf8427e”
...
HTTP/1.1 304 Not Modified
...

ETag and If-None-Match use quotation marks to indicate that the scheme
can perform more powerful comparisons than merely comparing two strings
for equality. If you want more information, see Section 3.2 of RFC 7232.
It’s worth noting that If-Modified-Since and If-None-Match both conserve
bandwidth by avoiding the resource from being transferred twice, as well as
time spent in transmission. Before the client may access the resource, they
must first make a round-trip to the server and return.
Caching is a powerful tool that is critical to the current Web’s performance.
However, neither of the Python client libraries you’re considering performs
caching by default. Both urllib and Requests think that their duty is to
perform a real-time network HTTP request when you need one, not to
manage a cache that may prevent you from ever needing to talk over the
network. If you want a wrapper that, when pointed to some sort of local
persistent storage that you can provide, employs Expires and Cache-control
headers, modification dates, and ETags to try to minimise latency and
network traffic, you’ll have to look for third-party libraries.
If you’re configuring or operating a proxy, caching is another something to
consider, which I’ll go over in Chapter 10.

Encoding of Content
The distinction between an HTTP transport encoding and a content
encoding is critical.
A transfer encoding is essentially a method of converting a resource into the
body of an HTTP response. The choice of transfer encoding makes no
difference in the end, by definition. For example, regardless of whether the
response was framed with a Content-Length or a chunked encoding, the
client should receive the same document or picture. Whether the bytes were

delivered raw or compressed to speed up transmission, the resource should
look the same.
A transfer encoding is merely a data transportation wrapper, not a change in
the underlying data.
Despite the fact that modern web browsers accept a variety of transfer
encodings, gzip is perhaps the most popular among programmers. A client
capable of accepting this transfer encoding must declare it in an Accept-
Encoding header and be prepared to read the response’s Transfer-Encoding
header to see if the server accepted it.
GET / HTTP/1.1
Accept-Encoding: gzip
...
HTTP/1.1 200 OK
Content-Length: 3913
Transfer-Encoding: gzip
...

Because the urllib library doesn’t support this technique, you’ll have to
write your own code to generate and detect these headers, as well as
uncompress the response body, if you want to use compressed transfer
encodings.
If the server responds with an acceptable Transfer-Encoding, the Requests
library immediately declares an Accept-Encoding of gzip,deflate and
uncompresses the content. This enables compression both automated and
invisible to Requests users when servers support it.

Negotiation of Content
In contrast to transfer encoding, content type and content encoding are
completely visible to the end user or client software making an HTTP
request. They define which file format will be used to represent a specific
resource, as well as what encoding will be used to convert text code points
into bytes if the format is text.
These headers allow an older browser that can’t show new-fangled PNG
images to indicate that it prefers GIF and JPG instead, and they allow
resources to be delivered in the language that the user has specified. Here’s

an example of how such headers may seem when created by a
contemporary browser:
GET / HTTP/1.1
Accept: text/html;q=0.9,text/plain,image/jpg,*/*;q=0.8
Accept-Charset: unicode-1-1;q=0.8
Accept-Language: en-US,en;q=0.8,ru;q=0.6
User-Agent: Mozilla/5.0 (X11; Linux i686) AppleWebKit/537.36
(KHTML)
...

The kinds and languages listed first in the header have the strongest
preference value of 1.0, however those listed later in the header are
frequently degraded to q=0.9 or q=0.8 to ensure that the server understands
they are not favoured over the best options. Many simple HTTP services
and sites ignore these headers entirely, opting instead to use a different URL
for each version of a resource they have. If a site supports both English and
French, the front page might be available in two versions: /en/index.html
and /fr/index.html. When viewing the corporation’s press kit, the identical
corporate logo could be found at both /logo.png and /logo.gif, and the user
could be given both for download. Different URL query parameters, such
as?f=json and?f=xml, are frequently specified in the documentation for a
RESTful web service (see Chapter 10) to pick the representation that is
delivered.
That, however, is not how HTTP was intended to work.
The goal of HTTP was for a resource to have only one path to follow,
regardless of how many different machine formats—or human languages—
might be used to render it, and for the server to select that resource using
content negotiation headers.
Why is it that content negotiation is so often overlooked?
For starters, content negotiation may provide the user minimal control over
their experience. Consider a website that has pages in both English and
French. The server has no control over the issue if it displays a language
based on the Accept-Language header and the user wants to see the other
language—it would have to propose to the user that they open their web
browser’s control panel and change their default language. What if the user
is unable to locate that option? What if they’re using a public computer and
don’t have permission to set preferences to begin with?

Rather than entrusting language selection to a browser that may or may not
be well-written, consistent, or simple to configure, many websites create
multiple redundant sets of pathways, one for each human language they
wish to serve. They may evaluate the Accept-Language header when the
user first enters in order to autodirect the browser to the language that is
most likely to be appropriate. They do, however, want the user to be
allowed to browse in the opposite way if the choice was incorrect.
Second, because HTTP client APIs (whether used by JavaScript in a
browser or offered by other languages in their own runtimes) often make it
difficult to control the Accepts headers, content negotiation is often ignored
(or sits alongside a URL-based mechanism for forcing the return of the
correct version of the content). The advantage of putting control
components in the path within the URL is that anyone with even the most
basic tool for getting a URL may twiddle the knob by modifying the URL.
Finally, content negotiation requires HTTP servers to generate or select
content based on a variety of axes. You might think that server logic always
has access to the Accepts headers, but this isn’t necessarily the case. When
content negotiation is removed from the equation, server programming
becomes much easier. Information negotiation, on the other hand, can help
complex services reduce the number of available URLs while still
providing a way for an intelligent HTTP client to obtain content that has
been rendered with its data formatting or human reader’s needs in mind. If
you intend to use it, review RFC 7231 for information on the syntax of the
various Accept headers.
The User-Agent string is one last irritation.
The User-Agent was never designed to be used in content negotiation; it
was only supposed to be used as a temporary workaround for browser
constraints. In other words, it was a means for targeting specific clients with
carefully prepared updates while allowing all other clients to access the
page without issue.
However, developers of applications supported by customer call centres
quickly realised that prohibiting any browser other than a single version of
Internet Explorer from accessing their site could eliminate compatibility
issues and reduce the number of support calls up front, reducing the number
of support calls. As a result of the arms race between clients and browsers,

you now have incredibly large User-Agent strings, as reported rather
fancifully at
http://webaim.org/blog/user-agent-string-history/.
Both the client libraries you’re looking at, urllib and Requests, allow you to
include any Accept headers you like in your request. They also both support
patterns for designing a client that automatically uses your preferred
headers. This feature is included straight into Requests’ concept of a
Session.
>>> s = requests.Session()
>>> s.headers.update({‘Accept-Language’: ‘en-US,en;q=0.8’})

Unless overridden with a different value, all subsequent calls to methods
like s.get() will use this default value for the header. The urllib library has
its own techniques for configuring default handlers that can inject default
headers, but they’re a bit confusing and object-oriented, so I’ll recommend
you to the documentation.

Type of Content
After inspecting the multiple Accepts headers from the client and deciding
the representation of a resource to offer, the server modifies the Content-
Type header of the outgoing response.
Content types are chosen from a list of MIME types that have already been
developed for multimedia that is sent in e-mail communications (see
Chapter 12). Text/plain and text/html, as well as image formats like
image/gif, image/jpg, and image/png, are all widespread. Documents can be
sent in a variety of formats, such as application/pdf. The content type
application/octet-stream is assigned to a plain series of bytes for which the
server can guarantee no more particular interpretation. When dealing with a
Content-Type header delivered through HTTP, there is one issue to be
aware of. If text is the major type (the term to the left of the slash), the
server has several possibilities for encoding text characters for transmission
to the client. It declares its preference by attaching a semicolon and a
statement of the character encoding used to convert the text to bytes to the
Content-Type header.
Content-Type: text/html; charset=utf-8

This implies you can’t just compare the Content-Type header to a list of
MIME types without first looking for the semicolon and breaking it in two.
The majority of libraries will be unable to assist you in this area. If you
build code that needs to inspect the content type, you’ll have to split on the
semicolon whether you use urllib or Requests (although Requests will at
least use, if not tell you about, the content type’s charset setting if you ask
its Response object for its already-decoded text attribute).
Ian Bicking’s WebOb library (Chapter 10) is the only one in this book that
allows you to manipulate the content type and character set separately by
default. Its Response objects have separate attributes called content type
and charset that are combined with a semicolon in the Content-Type header
as per the standard.

Authentication over HTTP
Authentication specifies any procedures for detecting whether a request
originates from someone who is authorised to make it, just as the word
authentic suggests something that is genuine, real, actual, or true. Just as a
phone call to a bank or airline will be prefaced with questions about your
address and personal information to ensure that the person calling is the
account holder, an HTTP request will frequently require built-in proof of
the identity of the machine or person making it.
Servers that want to announce formally, through the protocol itself, that
they can’t authenticate your identity or that your identity is fine but you’re
not authorized to view this particular resource it use the error code 401 Not
Authorized.
Because they are built solely for human users, many real-world HTTP
servers never bother to return 401. An attempt to fetch a resource without
the necessary identifier will most likely result in a 303 See Other to their
login page on these servers. This is useful for humans, but not so much for
your Python software, which will have to learn to discern between a 303
See Other that actually indicates a failure to authenticate and a harmless
redirection that is simply attempting to get you to the resource. Because
each HTTP request is distinct from all others, including those that follow
soon after it, Any authenticating information must be carried separately in
each request before and after it on the same socket. This independence is
what allows proxy servers and load balancers to distribute HTTP requests to

as many servers as they choose, even if they originate from the same socket.
To learn about the most modern HTTP authentication techniques, read RFC
7235. The first steps were not encouraging in the beginning.
Basic Authentication (also known as “Basic Auth”) required the server to
include a string called a realm in its 401 Not Authorized headers. Because
the browser can keep track of which user password goes with which realm,
a single server can encrypt different sections of its document tree with
separate passwords. The client then sends another request with an
Authorization header that includes the username and password (base-64
encoded, as if that matters), and it expects a 200 response.
GET / HTTP/1.1
...
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm=”engineering team”
...
GET / HTTP/1.1
Authorization: Basic YnJhbmRvbjphdGlnZG5nbmF0d3dhbA==
...
HTTP/1.1 200 OK
...

Passing the login and password in plain sight may seem unethical now, but
there were no wireless networks back then, and switching equipment tended
to be solid-state rather than running software that could be hacked. As
protocol designers began to consider the risks, a new “Digest access
authentication” approach was developed, in which the server sends a
challenge and the client instead responds with an MD5 hash of the
challenge-plus-password. However, the end effect is still a tragedy. Your
username is still visible in the clear, even if Digest authentication is used.
All form data is visible in the open, as are all resources returned from the
website. r. An astute attacker can then execute a man-in-the-middle attack,
convincing you to sign a challenge that they have just received from the
server and can then use to impersonate you. If banks wanted to show you
your balance and Amazon wanted you to fill in your credit card
information, websites needed true security. As a result, SSL was created in
order to develop HTTPS, and it was followed by the many versions of TLS
that you use today, as described in Chapter 6.

In theory, the adoption of TLS meant that there was no longer any issue
with Basic Auth. It’s used in a lot of simple HTTPS-protected APIs and
web applications today. Requests supports Basic Auth with a single
keyword parameter, but urllib only supports it if you generate a sequence of
objects to install in your URL opener (see the manual for details).
>>> r = requests.get(‘http://example.com/api/’,
... auth=(‘bpbonline’))

You may also create a Requests Session for authentication so you don’t
have to do it every time you get() or post().
>>> s = requests.Session()
>>> s.auth = ‘bpbonline’
>>> s.get(‘http://httpbin.org/basic-auth/bpbonline’)
<Response [200]>

Please keep in mind that this method, as implemented by Requests or other
current libraries, is not the whole protocol! The previously given username
and password are not related to any specific world. Because the username
and password are supplied unilaterally with the request without checking
whether the server even needs them, there is no 401 response that may
provide a realm. The auth keyword argument, or the analogous Session
setting, is just a shortcut for establishing the Authorization header without
having to do any base-64 encoding.
This simplicity is preferred by modern developers over the complete realm-
based protocol. Their sole purpose is to authenticate GET or POST queries
to a programmer-targeted API independent of the identity of the user or
application making the request. This is when a unilateral Authorization
header comes in handy. It also has another benefit: time and bandwidth are
not wasted obtaining an initial 401 when the client has reason to assume the
password would be required.
Requests will not help you if you end yourself talking to a true legacy
system that requires you to use various passwords for different realms on
the same server. It will be your responsibility to use the correct password
with the correct URLs. This is a rare instance where urllib can perform the
right thing whereas Requests can’t! However, I’ve never heard anyone
complain about this flaw in Requests, which shows how uncommon real
Basic Auth negotiation has become.

Cookies
Today, HTTP-mediated authentication is uncommon. In the end, HTTP
resources designed to be browsed by users using a web browser were a
losing proposition.
What was the issue with users and HTTP authentication? Typically, web
site designers want to do their own authentication in their own way. They
want a personalised, user-friendly login page that adheres to their own set
of user interaction rules. When web browsers are asked for in-protocol
HTTP authentication, they display a sad little pop-up box. Even at their
best, they aren’t really informative. They entirely remove the user from the
site’s experience. Furthermore, any failure to fill in the correct username
and password can result in the pop-up displaying repeatedly, with the user
having no idea what is wrong or how to fix it.
As a result, cookies were created.
From the client’s perspective, a cookie is an opaque key-value pair. It can
be included in every successful server response that the client receives.
GET /login HTTP/1.1
...
HTTP/1.1 200 OK
Set-Cookie: session-id=d41d8cd98f00b204e9800998ecf8427e;
Path=/
...

The client adds that name and value in a Cookie header in all subsequent
requests to that particular server.
GET /login HTTP/1.1
Cookie: session-id=d41d8cd98f00b204e9800998ecf8427e
...

This enabled the creation of login pages generated by the site. When an
invalid login form is submitted, the server can re-present it with as many
helpful hints or support links as it wants, all formatted to match the rest of
the site. Once the form has been successfully submitted, the client may be
given a cookie that has been specially constructed to convince the site of the
user’s identity during all subsequent requests.
A login page that isn’t a true web form but uses Ajax to stay on the same
page (see Chapter 11) can still benefit from cookies if the API is hosted on

the same hostname. When the login API call confirms the username and
password and returns 200 OK with a Cookie header, it enables all
subsequent requests to the same site—not just API calls, but also page,
image, and data requests—to deliver the cookie and be recognised as
coming from an authenticated user.
It’s worth noting that cookies should be opaque. They should either be
random UUID strings that direct the server to a database record containing
the genuine username or encrypted strings that only the server can decrypt
in order to learn the user’s identity. If they were user-parsable—for
example, if a cookie held the value THIS-USER-IS-bpbonline—a savvy
user could change it to make a fabricated value and send it with their next
request to impersonate another user whose username they knew or could
estimate.
Real-world Set-Cookie headers can be even more complex than the
example given, as RFC 6265 explains in detail. I’d like to bring up the
secure attribute. When sending unencrypted requests to the site, it directs
the HTTP client not to present the cookie. Without this characteristic, a
cookie could be revealed, allowing anyone else using the coffee shop’s wi-fi
to learn the cookie’s value and impersonate the user. Some websites will
place a cookie on your computer just for visiting. This allows them to keep
track of your visit as you navigate the site. The information gathered can
already be used to target advertisements as you browse, and it can even be
copied into your permanent account history if you check in with a username
later.
Without cookies to keep track of your identification and prove that you
have authenticated, many user-directed HTTP services will not work.
Cookie tracking with urllib necessitates object orientation; please read the
manual for more information.
Cookies are automatically tracked in Requests if a Session object is created
and used consistently.

Keep-Alive, Connections, and httplib
If a connection is already open, the three-way handshake that initiates a
TCP connection (see Chapter 3) can be skipped, which gave the impetus for
HTTP to allow connections to stay open as a browser received an HTTP

resource, then its JavaScript, and finally its CSS and images. The cost of
establishing up a new connection has increased due to the development of
TLS (see Chapter 6) as a best practise for all HTTP connections, increasing
the value of connection reuse.
It is now the default for an HTTP connection to stay open after a request in
protocol version HTTP/1.1. Connection: can be specified by either the
client or the server. If they intend to hang up once a request is completed,
close the connection; otherwise, a single TCP connection can be used to
fetch as many resources from the server as the client desires. Web browsers
frequently establish four or more simultaneous TCP connections per site in
order to download a page and all of its supporting data and pictures in
simultaneously in order to get them in front of the user as rapidly as
feasible. If you are an implementer who is interested in the details, you
should examine Section 6 of RFC 7230 to learn about the comprehensive
connection control mechanism.
The urllib module does not allow for connection reuse, which is
disappointing. Only the lower-level httplib module in the Standard Library
allows you to make two requests on the same connection.
>>> import http.client
>>> h = http.client.HTTPConnection(‘localhost:8000’)
>>> h.request(‘GET’, ‘/ip’)
>>> r = h.getresponse()
>>> r.status
200
>>> h.request(‘GET’, ‘/user-agent’)
>>> r = h.getresponse()
>>> r.status
200

When you ask it to conduct another request, an HTTPConnection object
that has become stuck will not return an error, but it will discreetly
construct a new TCP connection to replace the previous one. A TLS-
protected version of the same object is provided by the HTTPSConnection
class. The Session object in the Requests library, on the other hand, is
supported by urllib3, a third-party package that keeps track of open
connections to HTTP servers with which you’ve recently communicated so

that it can try to reuse them automatically when you ask for another
resource from the same site.

Conclusion
The HTTP protocol is used to retrieve resources that have a hostname and a
path. The urllib client in the Standard Library will work in simple scenarios,
but it is underpowered and lacks the functionality of Requests, a Python
library that has become an Internet sensation and is the go-to tool for
programmers who wish to get information from the Web.
HTTP employs the same basic layout on the wire for the client request and
the server response: a line of information followed by name-value headers,
then a blank line, and then, optionally, a body that can be encoded and
delimited in a variety of ways. The client always talks first, submitting a
request, and then waits for a response from the server. The most frequent
HTTP methods are GET, which is used to retrieve a resource, and POST,
which is used to deliver updated data to a server. There are a few different
methods, but they all seem to be either GET or POST. Each answer from
the server includes a status code that indicates whether the request was
successful or unsuccessful, or whether the client has to be forwarded to
another resource to complete it. HTTP is made up of numerous concentric
layers of design. Caching headers could allow a resource to be cached and
reused on a client without having to reload it, or they could allow the server
to forgo redelivering a resource that hasn’t changed. Both adjustments can
make a big difference in the performance of a busy website.
Content negotiation has the potential to adjust data formats and human
languages to the specific desires of the client and the user, but it has issues
in practise that make it less often used. Although built-in HTTP
authentication was a bad design for interactive use and was replaced with
custom login pages and cookies, Basic Auth is still used to authenticate
calls to TLS-secured APIs on occasion. By default, HTTP/1.1 connections
can persist and be reused, and the Requests library makes every effort to do
so. In the next chapter, you’ll take what you’ve learned so far and apply it to
the task of programming by looking at it from the perspective of
constructing a server.

CHAPTER 10
Servers that handle HTTP

How can a Python programme reply to HTTP requests as a server? For
constructing a TCP-based network server, you learnt various essential
socket and concurrency patterns in Chapter 7. Because HTTP’s popularity
has led in off-the-shelf solutions for all of the key server patterns that you
could require, it’s doubtful that you’ll ever need to create anything that low-
level with it.
While It’s even possible to use it from the command line.
$ python3 -m http.server
Serving HTTP on 0.0.0.0 port 8000 ...

For serving files from the filesystem, this server adheres to the old
conventions established in the 1990s. The path in the HTTP request is
converted to a path on the local filesystem to search. Only files in or
beneath the current working directory are served by the server. Files are
served as usual. When a directory is mentioned, the server either sends the
contents of its index.html file, if one exists, or a dynamically created listing
of the files contained within. When I’ve needed to transfer data between
machines and none of the more particular file transfer protocols were
accessible, having a small web server available wherever Python is installed
has gotten me out of a lot of tight spots. But, if you need anything more—if
you need to put your own programme in charge of responding to HTTP
requests—what steps should you take?
This question is addressed in two chapters of this book. Whether your code
produces documents or a programmerfacing API,. The World Wide Web
will subsequently be described in Chapter 11, as well as methods for
returning HTML pages and communicating with a user’s browser.

Structure:
Web Server Gateway Interface (WSGI)

Server-Frameworks that are asynchronous
Proxies (Forward and Reverse)
four architecture style.
Python on Apache
Pure-Python HTTP Servers on the Rise
The Advantages of Reverse Proxies
Platforms as a Service (PaaS)
The REST Question and GET and POST Patterns
Web Server Gateway Interface (WSGI)Without a Framework
Conclusion

Objectives:
The focus of this chapter is on third-party tools, the Standard Library
includes an HTTP server implementation & will look at server architecture
and deployment, answering the questions that need to be answered.

Web Server Gateway Interface (WSGI)
Many Python services were created as basic CGI scripts that were invoked
once per incoming request in the early days of HTTP programming. The
server broke up the HTTP request into chunks and stored them in the
environment variables of the CGI script. Python programmers may inspect
them directly and print an HTTP response to standard output, or they could
use the Standard Library’s cgi module for assistance. Because launching a
new process for each incoming HTTP request slowed server performance
significantly, language runtimes began to create their own HTTP servers.
Python now has the http.server Standard Library module, which allows
programmers to create their own services by adding do_GET() and
do_POST() methods to their own BaseHTTPRequestHandler subclasses.
Other programmers desired dynamic pages to be served through a web
server that could also provide static material like images and stylesheets.
Mod python was created as a result: an Apache module that allowed
correctly registered Python functions to provide bespoke Apache handlers
for authentication, logging, and content. Apache’s API was one-of-a-kind.

Python handlers were given a specific Apache request object as an
argument and could use the apache module’s special functions to interface
with the web server. Applications created with mod python looked nothing
like those written using CGI or http.server.
As a result, each HTTP application designed in Python tended to be
tethered to a single method of communicating with the web server. To work
with http.server, a service created for CGI would need at least a partial
rewriting, and both would need to be modified before they could run under
Apache. This makes it difficult to transfer Python web services to new
platforms. PEP 333, Web Server Gateway Interface, was created as a result
of the community’s response (WSGI).
“All difficulties in computer science may be solved by another level of
indirection,” as David Wheeler famously observed, and the WSGI standard
provided the extra level of indirection required for a Python HTTP service
to work with any web server. It defined a calling convention that, if adopted
by all major web servers, would allow low-level services and whole web
frameworks to be plugged into any web server. The attempt to deploy
WSGI everywhere was immediately successful, and it is currently the
default mechanism for Python to communicate with HTTP.
A WSGI application is defined by the standard as a callable with two
arguments. Listing 10-1 shows an example where the callable is a basic
Python function. (A Python class, which is another type of callable, or even
a class instance with a __call__() method are alternative options.) The first
parameter, environ, is given a dictionary that contains a more
comprehensive version of the previous CGI set of environment variables.
The second parameter is a callable named start_response() that the WSGI
application should use to declare its response headers. The app can either
start giving byte strings (if it is a generator) or return an iterable that yields
byte strings when iterated across after being called (returning a simple
Python list is sufficient, for example).

Listing 10-1. A Straightforward HTTP Service As a WSGI client, it’s been
written.
#!/usr/bin/env python3
Programming in Python: The Basics

A simple HTTP service built directly against the low-level
WSGI spec.
from pprint import pformat
from wsgiref.simple_server import make_server
def app(environ, start_response):
headers = {‘Content-Type’: ‘text/plain; charset=utf-8’}
start_response(‘200 OK’, list(headers.items()))
yield ‘Here is the WSGI environment:\r\n\r\n’.encode(‘utf-8’)
yield pformat(environ).encode(‘utf-8’)

if __name__ == ‘__main__’:
httpd = make_server(‘’, 8000, app)
host, port = httpd.socket.getsockname()
print(‘Serving on’, host, ‘port’, port)
httpd.serve_forever()

Listing 10-1 may make WSGI appear straightforward, but that is only
because it has chosen to operate in a simplistic manner rather than fully
utilising the standard. When implementing the server side of the
specification, the level of complexity is higher since the code must be
prepared for applications that take full advantage of the standard’s many
caveats and edge cases. If you want a better grasp of what’s involved, check
PEP 3333, the contemporary Python 3 version of WSGI.
Following the release of WSGI, the idea of WSGI middleware—the idea
that future Python HTTP services may be built from a series of concentric
WSGI wrappers—gained popularity. Authentication could be provided by a
single wrapper. Before returning a 500 Internal Server Error page, another
might catch exceptions and log them. Another might reverse-proxy legacy
URLs to an outdated CMS still in use in an organisation and re-theme it to
fit the organization’s more current pages using Diazo (a project that still
exists). Although some developers continue to design and utilise WSGI
middleware, most Python programmers now use it solely for the
pluggability it provides between an application or framework and the web
server that listens for incoming HTTP requests.

Server-Frameworks that are asynchronous
However, there is one application design that has remained unaffected by
the WSGI revolution: asynchronous servers that allow coroutines or green

threads.
Because the WSGI callable is designed to work with a standard
multithreaded or multiprocess server, it is anticipated to block during any
I/O operations. WSGI does not provide a way for the callable to return
control to the main server thread so that other callables can take turns
progressing. (Review how an asynchronous service separates its logic into
short, nonblocking bits of code in Chapter 7’s explanation of asynchrony.)
As a result, each asynchronous server framework has had to develop its
own set of rules for writing web services. While these patterns differ in
terms of simplicity and convenience, they often handle parsing incoming
HTTP requests and may provide conveniences such as automatic URL
dispatch and database connection commit (see Chapter 11).
This is why “Server-Frameworks” is included in the section’s title. Projects
experimenting with async in Python must first create an HTTP web server
on top of their engine, then devise a calling convention for passing the
request information they’ve parsed to your own code. You can’t choose an
async HTTP server and web framework individually, unlike in the WSGI
ecosystem. Both are most likely to be included in the same package. For
more than a decade, the Twisted server, which supports a variety of protocol
handlers, has provided its own set of rules for developing web services.
Facebook recently built and released its Tornado engine, which, rather than
supporting a wide range of protocols, focuses solely on HTTP performance.
Twisted does not support the same set of callback conventions. The Eventlet
project, whose green threads are implicitly asynchronous rather than
explicitly handing control back at each I/O transaction, allows you to write
callables that appear to be conventional WSGI but silently give control
when they attempt blocking activities.
In the future, Guido van Rossum, the creator of Python, has pushed for the
new asyncio engine in Python 3.4 (see Chapter 7) to provide a standardised
interface for different event-loop implementations to integrate into different
asynchronous protocol frameworks. While this may help to unify the
diverse world of low-level event loops, it does not appear to have any
immediate impact on authors who want to develop asynchronous HTTP
services because it does not specify an API that speaks the HTTP request
and response language. If you’re developing an HTTP service using an
async engine like asyncio, Tornado, or Twisted, keep in mind that you get to

choose both your HTTP server and the framework that will help you parse
requests and compose responses. Servers and frameworks will not be able
to be mixed and matched.

Proxies (Forward and Reverse)
An HTTP proxy, whether forward or reverse, is an HTTP server that
receives incoming requests and, in some cases, transforms into a client
making an outbound HTTP request to a server behind it, before returning
the response to the original client. For an introduction to proxies and how
the design of HTTP anticipates their demands, see RFC 7230 Section 2.3:
https://tools.ietf.org/html/rfc7230#section-2.3.
Forward proxies appear to have been the most popular proxying pattern in
early accounts of the Web. Instead than directly communicating with
remote servers, an employer can provide an HTTP proxy that employees’
web browsers request. If a hundred employees request the Google logo first
thing in the morning, the proxy might only make one request to Google for
the logo, which could then be cached and used to meet all later employee
requests. The employer would suffer less bandwidth and the employees
would experience a speedier Web if Google was generous with its Expires
and Cache-Control headers. Forward proxies are no longer possible due to
the adoption of TLS as a universal best practise for protecting user privacy
and credentials. A proxy can’t inspect or cache a request it doesn’t
understand.
Reverse proxies, on the other hand, have become commonplace in major
HTTP services. A reverse proxy is used as part of a web service and is
completely hidden from HTTP clients. Clients who believe they are talking
to python.org are actually communicating through a reverse proxy. If the
core python.org servers were careful to include Expires or Cache-Control
headers, the proxy can provide many static and dynamic pages directly
from its cache. Because HTTP requests are only delivered to the core
servers if a resource is either uncacheable or has expired from the proxy’s
cache, a reverse proxy can typically bear the majority of the load of
maintaining a service.
TLS termination must be performed by a reverse proxy, and it must be the
service that owns the certificate and private key for the service it proxies. A

proxy cannot conduct caching or forwarding unless it can examine each
incoming HTTP request.
When using a reverse proxy, whether it’s a front-end web server like
Apache or nginx or a dedicated daemon like Varnish, caching-related
headers like Expires and Cache-Control become even more critical than
usual. They become vital signals between tiers of your own service design,
rather than being significant simply to the end user’s browser.
Reverse proxies can also help with data that you don’t think should be
cached, such as a headline page or an event log that requires up-to-the-
second accuracy, as long as you can live with the findings being a few
seconds old. After all, retrieving a resource takes just a fraction of a second
in most cases. Is it really so bad if the resource is one second older?
Consider setting the Cache-Control header of a vital feed or event log that
receives a hundred requests per second to a one-second maximum age. Your
reverse proxy will kick in and potentially lower your server load by a factor
of a hundred: it will only need to fetch the resource once every second at
the start of the second, and it will be able to reuse that cached result for all
other clients who ask.
If you’re planning on creating and implementing a large HTTP service
behind a proxy, RFC 7234 with its extensive discussion of HTTP caching’s
design and expected benefits is a good place to start. You’ll find options and
parameters like proxy-revalidate and s-maxage that are explicitly targeted at
intermediary caches like Varnish rather than the end user’s HTTP client,
which you should have in your toolkit when you approach a service design.
The content of a page is frequently determined by factors other than its
path and method, such as the Host header, the identity of the user
making the request, and sometimes headers defining what content
types their client can support. Examine the Vary header description in
RFC 7231 section 7.1.4, as well as the Vary header description in
Chapter 9. The value Vary: Cookie is frequently required to ensure
accurate behaviour for reasons that will become evident.

four architecture style.
While architects appear to be capable of devising an infinite number of
complex methods for putting together an HTTP service from smaller

elements, the Python community has settled on four major approaches (see
Figure 10-1). What are your alternatives for deploying an HTTP service if
you’ve created Python code to generate dynamic content and choose a
WSGI-aware API or framework?

Create a server that is written in Python and can call your WSGI
endpoint from within its own code. Although the Green Unicorn
(“gunicorn”) server is now the most popular, there are several
production-ready, pure-Python servers available. For example, the
battle-tested CherryPy server is still in use in projects today, while
Flup continues to gain users. (Unless your service is modest load and
internal to an organisation, prototype servers like wsgiref should be
avoided.) If you use an async server engine, you’ll have to run both
the server and the framework in the same process.
Use Apache with mod wsgi configured to run your Python code in a
separate WSGIDaemonProcess, resulting in a hybrid solution in which
two distinct languages are used on the same server. Static resources
are served straight from Apache’s C-language engine, whereas
dynamic paths are passed to mod wsgi, which then calls the Python
interpreter to execute your application code. (This option is not
accessible for async web frameworks since WSGI does not provide a
means for an application to momentarily relinquish control and then
complete its work later.)
Behind a web server, run a Python HTTP server like Gunicorn (or
whatever server your async framework requires) that can serve static
files directly while simultaneously acting as a reverse proxy for the
dynamic resources you’ve developed in Python. For this role, both
Apache and nginx are popular front-end servers. If your Python
application outgrows a single computer, they may load-balance
requests across multiple back-end servers.
Create a third layer that faces the actual world by running a Python
HTTP server behind Apache or nginx, which is then behind a pure
reverse proxy like Varnish. These reverse proxies can be dispersed
globally, allowing cached resources to be provided from sites close to
client machines rather than all from the same continent. Fastly and
other content delivery networks function by deploying armies of
Varnish servers to machine rooms across the globe and then leveraging

them to provide you with a turnkey service that terminates your
externally facing TLS certificates and routes requests to your central
servers.

Figure 10-1: Four typical ways to deploy Python code on its own or via reverse HTTP proxies.

The interpreter is large, slow, and its Global Interpret Lock prevents more
than one thread from executing Python bytecode at the same time, so the
choice between these four architectures has historically been driven by
three features of the C Python runtime: the interpreter is large, slow, and its
Global Interpret Lock prevents more than one thread from executing Python
bytecode at the same time.
Because of the interpreter lock’s constraints, it was decided to employ
distinct Python processes rather than numerous Python threads sharing the
same process. However, the interpreter’s size pushed the other way: only a
limited number of Python instances can fit in RAM, limiting the number of
processes.

Python on Apache
Imagine an early Python-powered web site running on Apache with the old
mod python. This will help you understand the issues outlined before. The
majority of queries to a normal web site (see Chapter 11) are for static
resources: for every request to have Python dynamically build a page, there
may be a dozen requests for CSS, JavaScript, and pictures. Despite this,
mod python installed a copy of the Python interpreter runtime on each
Apache worker, the majority of which sat idle. At any given time, only one
worker out of a dozen might be running Python, while the rest spooled out

files using Apache’s core C code. This deadlock can be broken by
separating Python interpreters from web server workers who shovel static
content from disc onto waiting sockets. As a result, two conflicting methods
arose.
The first option is to utilise the modern mod wsgi module with the “daemon
process” capability enabled to prevent burdening each Apache thread with a
Python interpreter. Apache workers, whether threads or processes, are
spared the cost of loading or running Python in this mode, incurring just the
cost of dynamically linking to mod wsgi. Mod wsgi, on the other hand,
generates and manages a separate pool of Python worker processes to which
it can send requests and where the WSGI application is really run. For each
enormous Python interpreter that sits slowly developing a dynamic website,
dozens of tiny Apache workers may be busy churning out static files.

Pure-Python HTTP Servers on the Rise
However, after you’ve accepted the fact that Python will not run in the
primary server process and that HTTP requests will need to be serialised
and forwarded from an Apache process to a Python process, why not just
use HTTP? Why not set up Apache to forward each dynamic request to
Gunicorn, where your service is running?
True, you’ll now have to start and manage two separate daemons (Apache
and Gunicorn), when previously you only had to start Apache and let mod
wsgi handle generating your Python interpreters. However, you will acquire
a tremendous degree of versatility in exchange. To begin with, there is no
longer any rationale for Apache and Gunicorn to share a single box. You
can run Apache on a server that is optimised for a large number of
concurrent connections and expansive disc access, and Gunicorn on a
second server that is tuned for dynamic language runtimes performing
database back-end requests.
You have the option of changing Apache once it has been lowered from
your application container to a static file server with reverse-proxy
capabilities. After all, nginx, like many other modern web servers, can serve
files while also reverse-proxying other paths.
In the end, the mod wsgi option is a limited and proprietary version of true
reverse proxying: When you could be speaking real HTTP and having the

choice of running Python on the same machine or on a different one as your
needs develop, you’re speaking its own internal protocol between processes
that must reside on the same machine.

The Advantages of Reverse Proxies
What about HTTP apps that exclusively offer dynamic content generated by
Python code, with no static resources involved? In such instances, Apache
or nginx may appear to have little work to perform, and you may be
tempted to disregard them and expose Gunicorn or another pure Python
web server to the world directly.
Consider the security that a reverse proxy can give in such situations.
Simply connect to your n-worker service with n sockets, deliver a few
initial desultory bytes of request data, and then freeze to bring your web
service to a standstill. All of your employees will be waiting for a
comprehensive request that may or may not arrive.
Requests that take a long time to arrive with Apache or nginx in front of
your service, on the other hand, are slowly collected by the reverse proxy’s
buffers, which will typically not forward the request to you until it has been
received in its entirety, whether through malice or because some of your
clients run on mobile devices or are otherwise suffering from low
bandwidth.
Of course, a proxy that collects full requests before delivering them isn’t
impenetrable to a real denial-of-service attack—nothing is, unfortunately—
but it does save your dynamic language runtime from freezing when data
from a client isn’t yet available. It also protects Python from a variety of
other types of erroneous input, such as megabyte-long header names and
completely malformed requests, because Apache or nginx would simply
reject them with 4xx errors, leaving your back-end application code in the
dark.
On the above list of architectures, I currently tend toward three sweet spots.
Gunicorn under nginx or, if a system administrator likes, Apache is my
default.
If I’m operating a service that’s basically just an API with no static
components, I’ll sometimes try to run Gunicorn by itself or directly behind
Varnish if I want my dynamic resources to benefit from its first-class

caching logic as well. Only when designing huge web services do I go all-in
with three tiers: Gunicorn-based Python, nginx or Apache, and a local or
geographically dispersed Varnish cluster.
Many additional configurations are, of course, possible, and I hope that the
preceding discussion provided enough caveats and trade-offs to enable you
to make informed decisions when the topic arises in your own projects and
organisations.
The advent of Python runtimes like PyPy that can operate at machine speed
is one key question that lurks on the horizon. Why not have Python serve
both static and dynamic material once Python code can run as quickly as
Apache? It will be fascinating to watch if servers based on fast Python
runtimes put old and trustworthy solutions like Apache and nginx to the
test. When the industry favourites are so well documented, known, and
liked by system administrators, what incentives can Python servers give for
migration?
Variations on any of the previous designs are, of course, possible. If no
static files need to be served or you’re okay for Python to pull them from
the disc itself, Gunicorn can run immediately behind Varnish. Another
alternative is to use nginx or Apache with reverse-caching enabled to give
rudimentary Varnish-style caching without the requirement for a third tier.
Some websites explore with alternate front-end server-to-Python
communication protocols, such as those offered by the Flup and uwsgi
projects. The four patterns presented in this section are only a few of the
most popular. There are other additional designs that may be used, the most
of which are now in use.

Platforms as a Service (PaaS)
Many of the previous section’s topics—load balancing, multiple tiers of
proxy server, and application deployment—start to wander into system
administration and operations planning territory. Python isn’t the only
language that has to deal with issues like choosing a front-end load balancer
or deciding how to make an HTTP service physically and geographically
redundant. They would take you far away from the subject of Python
network programming if they were discussed in this chapter.

As you include Python into your network service plan, I recommend
reading about automated deployment, continuous integration, and high-
performance scaling to learn about technologies that may be useful to your
service and company. There isn’t enough room to include them all here.
However, there is one aspect worth mentioning: the rise of platform-as-a-
service (PaaS) providers and the challenge of how to package your apps for
deployment on these platforms.
Much of the drudgery of setting up and running an HTTP service is
automated—or, at the very least, devolved upon your PaaS provider rather
than yourself—with PaaS. You are not required to rent servers, provide
them with storage and IP addresses, configure root access to administer and
reboot them, install the correct version of Python, and copy your application
to each server, along with the system scripts required to start your service
up automatically after a reboot or power outage. Instead, these
responsibilities are taken on by the PaaS provider, who may install or rent
thousands of computers, hundreds of database servers, and dozens of load
balancers to serve its customer base. After you’ve automated all of these
steps, all that’s left is for you to send the provider a configuration file. After
that, your provider may add your domain name to its DNS, point it to one of
its load balancers, install the correct version of Python and all of your
Python dependencies inside an operating system image, and your
application will be up and running. The procedure can make it simple to
publish fresh source code to them, as well as roll back if the new version of
your software appears to cause problems when used by real consumers.
Heroku is a popular PaaS platform that includes first-class support for
Python apps as part of its ecosystem. Small businesses who lack the skills
or time in-house to set up and operate products like load balancers would
benefit from Heroku and its competitors.
The emerging Docker ecosystem could be a Heroku competitor because it
allows you to create and run Heroku-style containers on your own Linux
machine, making it much easier to test and debug them than when every
line of configuration you want to tweak requires a long and slow push and
rebuild on Heroku. If you simply have a rudimentary understanding of
PaaS, you might expect it to accept your WSGI-ready Python programme
and execute it for you without any more effort.

This is not the case, as it turns out. You will still be responsible for selecting
a web server whether you are using Heroku or a Docker instance.
While PaaS providers offer load balancing, containerization, version-
controlled configuration, container image caching, and database
administration, they still expect your application to provide the gold
standard in HTTP interoperability: an open port to which the PaaS load
balancer can connect and send HTTP requests. And, of course, you’ll need
a server to turn your WSGI application or framework into a listening
network port.
Some developers, confident that the PaaS service would handle load
balancing, choose a simple single-threaded server and delegate the task of
spinning up as many instances of their application as they require to the
PaaS provider.
However, many developers use Gunicorn or one of its competitors because
each of its containers can have several workers running at the same time.
This allows a single container to accept multiple requests if the PaaS load
balancer’s roundrobin logic returns it to the same container before the first
request is completed—which is a problem if some of your service’s
resources take several seconds to render, causing subsequent requests to be
queued until the first is completed.
It’s worth noting that most PaaS providers don’t allow you to serve static
content unless you use Python or install Apache or nginx to your container.
While you could build your URL space so that static resources have a
different hostname than dynamic pages and host those static resources
somewhere else, many architects want to be able to combine static and
dynamic resources in one namespace.

The REST Question and GET and POST Patterns
One of the principal authors of the present HTTP standards, Dr. Roy
Fielding, wrote his Ph.D. dissertation on its design. He coined the term
Representational State Transfer (REST) to describe the architecture that
develops when all of the functionalities of a hypertext system, like as
HTTP, are turned on. If you wish to look at his dissertation, you can do so
online.

He builds develops the concept of REST from a series of basic principles in
Chapter 5.
www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
“REST is defined by four interface constraints,” says Dr. Fielding, who
enumerates them quickly at the end of section 5.1.5 of his dissertation.

Identifying resources
Using representations to manipulate resources
Messages that are self-descriptive
Hypermedia as an application state engine

Many service designers have sought to create services that can truly merit
the moniker “RESTful,” because they desire their ideas to flow with the
grain of HTTP’s design rather than against it. Dr. Fielding is quick to point
out that the majority of them don’t. Where do they make a mistake?
The first constraint, “resource identification,” eliminates practically all
traditional kinds of RPC. At the HTTP protocol level, neither JSON-RPC
nor XML-RPC (see Chapter 18) disclose resource identities. Consider a
client who wants to retrieve a blog post, change the title, and then retrieve
the post again to compare the two. If these stages were implemented as
RPC method calls, the following methods and pathways would be available
to HTTP:
POST /rpc-endpoint/ ® 200 OK
POST /rpc-endpoint/ ® 200 OK
POST /rpc-endpoint/ ® 200 OK

Each of these requests presumably mentions something like “post 1022” as
the specific resource that the client wants to fetch or change somewhere
inside the body of each POST. However, RPC hides this from the HTTP
protocol. Instead, a RESTful interface would use the resource path to
describe which post was being changed, for example, /post/1022/.
The second limitation, “Manipulation of resources through representations,”
prevents the designer from defining an ad-hoc mechanism for updating the
title that is exclusive to their service. After all, every time a client author
wanted to understand how to conduct an update, they’d have to sift through
service-specific documentation. Because the representation of a post—
whether it uses HTML, JSON, XML, or another format—is the sole form in

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

which either reads or writes may be expressed in REST, there is no need to
learn a specific strategy to change a post’s title. A client simply obtains the
current representation, updates the title, and submits the new representation
back to the service to update the title of a blog post.
GET /post/1022/ ® 200 OK
PUT /post/1022/ ® 200 OK
GET /post/1022/ ® 200 OK

Many designers despise the idea that requesting or updating a dozen
resources necessitates a dozen round-trips to the service, and there’s a
strong urge to make pragmatic exceptions to the architecture. However,
symmetry between the activities of reading and writing a resource, as well
as the exposure of meaningful semantics in the HTTP protocol, are
advantages of REST properly followed. Because the protocol can now tell
which requests are reads and which are writes, and if GET answers include
the correct headers, caching and conditional requests are now allowed even
when programmes communicate without using a browser.
The final restriction, “self-descriptive messages,” is triggered by explicit
caching headers, which make communications self-documenting. A client
developer does not need to consult API documentation to learn that
/post/1022/ is in JSON format or that it can only be cached if conditional
requests are used to ensure that the cached copy is up-to-date, whereas a
search like /post/?q=news can be served directly from cache for up to 60
seconds after retrieval. Instead, this knowledge is disclosed again in the
headers of each HTTP response that is sent. If the first three REST criteria
are met, a service becomes completely transparent to the HTTP protocol
and, as a result, to the entire suite of proxies, caches, and clients built to
exploit its semantics.
They can do so regardless of whether the service is designed for human
consumption, producing HTML pages with forms and JavaScript (see
Chapter 11), or for machine consumption, delivering short URLs that lead
to JSON or XML representations.
The last constraint, on the other hand, is significantly less frequently met.
The phrase “hypermedia as the engine of application state” has gotten so
controversial that it now has an acronym! Despite the fact that it was not
mentioned in Dr. Fielding’s thesis, it has since been shortened to
“HATEOAS” in following publications and arguments. He attracted

attention to the restriction in a blog post titled “REST APIs Must Be
Hypertextdriven,” in which he lamented the announcement of a so-called
REST API that failed this final constraint.
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-

hypertext-driven

There, he breaks out the HATEOAS limitation into six independent bullet
points, the final of which is likely the most comprehensive. “A REST API
should be entered with no prior information beyond the first URI
(bookmark) and a set of standardised media types that are appropriate for
the target audience,” it says at the outset.
Almost all HTTP-driven APIs would be disqualified as a result. Whether
it’s from Google or GitHub, their documentation almost always begins
with, “Each post lives at a URL like /post/1022/ that names the post’s
unique ID.” With this move, an API has moved away from total
RESTfulness and into a murky world where specific rules hidden in
documentation, rather than hypertext links, guide the client to the relevant
resource.
A fully RESTful API, on the other hand, would only have one entry point.
Perhaps a succession of forms would be returned, one of which could be
used to input a blog post ID to learn its URL. Instead of human-readable
documentation, the service would dynamically link the concept of “the post
with ID 1022” to a specific location. According to Dr. Fielding, this
inclusive concept of hypertext is a critical requirement for services aiming
for decades of use, as it will be capable of supporting multiple generations
of HTTP clients and, subsequently, data archaeology when the initial users
of an old service have all passed away. However, because the first three
aspects of HTTP provide the majority of the benefits—statelessness,
redundancy, and cache acceleration—it appears that few services have yet
to up to the challenge of full REST compliance.

Web Server Gateway Interface (WSGI)Without a
Framework
Several techniques for constructing a network service were demonstrated in
Chapter 7, all of which can be used to respond to HTTP requests.

However, writing your own low-level socket code to speak the protocol is
rarely necessary. Many protocol specifics can be delegated to your web
server and, if applicable, your web framework. What exactly is the
distinction between the two?
The web server is the programme that keeps a listening socket open, calls
accept() to accept new connections, and parses each HTTP request that
comes in. A server will handle instances like a client that connects but
never completes its request and a client whose request cannot be processed
as HTTP without needing to call your code. Some servers will also time out
and shut a client socket that is idle, as well as reject requests with
excessively long path or headers.
By invoking the WSGI callable that you have registered with the server,
only well-formed, full requests are given to your framework or code. The
server will often issue HTTP response codes like these on its own authority
(see Chapter 9):

400 words If the incoming HTTP request is incomprehensible or
exceeds the size limit you’ve set, it’s considered a bad request.
500 Server Error: If your WSGI callable throws an exception rather
than completing correctly.

There are two methods for creating a WSGI callable that your web server
will use when HTTP requests arrive and are correctly parsed. You can
create code that plugs into a web framework that provides its own WSGI
callable, or you can write code that plugs into a web framework that
provides its own WSGI callable. What is the distinction?
The most important function of a web framework is to handle dispatch. In
the space of possible methods, hostnames, and pathways, each HTTP
request name coordinates. You’re probably only using one or two
hostnames for your service, rather than all of them. You may be ready to
execute GET or POST requests, but a request can specify any method it
wants—even one it hasn’t invented yet. You may be able to produce in a
variety of ways. There are possibly many more for which you will not be
able to provide helpful responses. The framework will allow you to declare
which paths and methods you support, so it can take care of automatically
responding to those that don’t with status codes like these:

Not Found (404)
405 Method Isn’t Acceptable
501 Not Initiated

Chapter 11 examines how both traditional and asynchronous frameworks
handle dispatch, as well as the other key capabilities they provide to
programmers. But what would your code look like if they weren’t there?
What if your own code communicates directly with WSGI and handles the
dispatching?
There are two approaches to developing such an application: either by
understanding the WSGI standard and learning to read its environment
dictionary for yourself, or by utilising a wrapper such as that offered by the
competing WebOb and Werkzeug toolkits, both of which are accessible via
the Python Package Index. Working in the raw WSGI environment
necessitates a verbose coding style, as shown in Listing 10-2.

Listing 10-2. WSGI Callable for Returning the Current Time in Raw Form
#!/usr/bin/env python3
Programming in Python: The Basics
A simple HTTP service built directly against the low-level
WSGI spec.
import time
def app(environ, start_response):
host = environ.get(‘HTTP_HOST’, ‘127.0.0.1’)
path = environ.get(‘PATH_INFO’, ‘/’)
if ‘:’ in host:
host, port = host.split(‘:’, 1)
if ‘?’ in path:
path, query = path.split(‘?’, 1)
headers = [(‘Content-Type’, ‘text/plain; charset=utf-8’)]
if environ[‘REQUEST_METHOD’] != ‘GET’:
start_response(‘501 Not Implemented’, headers)
yield b’501 Not Implemented’
elif host != ‘127.0.0.1’ or path != ‘/’:
start_response(‘404 Not Found’, headers)
yield b’404 Not Found’
else:

start_response(‘200 OK’, headers)
yield time.ctime().encode(‘ascii’)

Without a framework, your code will have to do all of the negative work of
figuring out which hostnames, routes, and methods don’t match the services
you want to deliver. You must return an error for every deviation from that
combination of request parameters that you are able to identify while
offering a GET of the path / at the hostname 127.0.0.1. Of all, for such a
little service, it may seem stupid not to take any hostname. However, we’re
pretending to be a large service with a variety of material available at
dozens of distinct hostnames, so we’re paying close attention to them. If the
client provides a Host header like 127.0.0.1:8000, you are responsible for
splitting apart the hostname and port. In addition, if the URL has a query
string like /?name=value dangling off the end, you must divide the path on
the character? (The listing assumes that you wish to disregard unnecessary
query strings rather than returning 404 Not Found, as is standard practise.)
The following two listings show how third-party libraries, which can be
added using the normal “pip” installation tool, can make these bare WSGI
patterns easier (see Chapter 1).
$ pip install WebOb
$ pip install Werkzeug

WebOb is a lightweight object interface that covers a conventional WSGI
dictionary to provide more accessible access to its information. It was
originally designed by Ian Bicking. Listing 10-3 demonstrates how it avoids
several of the preceding example’s typical patterns.

Listing 10-3. Callable WSGI WebOb was used to return the current time.
#!/usr/bin/env python3
Programming in Python: The Basics
A WSGI callable built using webob.
import time, webob
def app(environ, start_response):
request = webob.Request(environ)
if environ[‘REQUEST_METHOD’] != ‘GET’:
response = webob.Response(‘501 Not Implemented’, status=501)
elif request.domain != ‘127.0.0.1’ or request.path != ‘/’:
response = webob.Response(‘404 Not Found’, status=404)

else:
response = webob.Response(time.ctime())
return response(environ, start_response)

WebOb already supports the two frequent patterns of examining the
hostname from the Host header separately from any optional port numbers,
and looking at the path without the query string at the end. It also comes
with a Response object that knows all there is to know about content types
and encodings (it defaults to plain text), so all you have to do is provide a
string for the response body and WebOb will handle the rest.
Among the many Python HTTP response object implementations,
WebOb offers a characteristic that makes it practically unique. The
WebOb Response class allows you to consider the two elements of a
Content-Type header, such as text/plain; charset=utf-8, as two different
values, which it exposes as the content type and charset attributes.
Armin Ronacher’s Werkzeug library, which is also the backbone of his
Flask framework, is less popular than WebOb for pure WSGI code but has a
devoted following (discussed in Chapter 11). Instead of allowing changes to
the underlying WSGI environment, its request and response objects are
immutable. In this scenario, Listing 10-4 explains how it differs from
WebOb in terms of ease.

Listing 10-4. Callable WSGI Returning the Current Time was written with
Werkzeug.
#!/usr/bin/env python3
Programming in Python: The Basics
A WSGI callable built using Werkzeug.
import time
from werkzeug.wrappers import Request, Response
@Request.application
def app(request):
host = request.host
if ‘:’ in host:
host, port = host.split(‘:’, 1)
if request.method != ‘GET’:
return Response(‘501 Not Implemented’, status=501)
elif host != ‘127.0.0.1’ or request.path != ‘/’:

return Response(‘404 Not Found’, status=404)
else:
return Response(time.ctime())

Werkzeug has spared you the trouble of remembering the correct WSGI
callable signature, instead providing a decorator that converts your function
to a more simpler calling convention. You’ll get a Werkzeug Request object
as your only argument, and you’ll have the option of only returning a
Response object—the library will take care of the rest.
The only small reversal from WebOb code is that you must divide
hostnames like 127.0.0.1:8000 in half yourself rather than having a
convenience method do it for you. Despite this little difference, the two
libraries perform the same thing in terms of allowing you to speak about
HTTP requests and answers at a higher level than the WSGI convention
allows. Working at this low level instead of using a web framework is
usually not worth your time as a developer. However, when you need to
make certain transformations on incoming HTTP requests before passing
them on to your web framework for processing, writing in raw WSGI
comes in useful. If you’re developing a bespoke reverse proxy or another
pure HTTP service in Python, a plain WSGI application may be ideal.
Raw WSGI callables can be regarded of as having the same place in Python
programming as forward and reverse proxies do in the larger HTTP
ecosystem. They’re better at low-level activities like filtering, normalising,
and dispatching requests than they are at offering resources at specific
hostnames and URLs like an HTTP service. Read the specification or
reference the patterns provided in either the WebOb or Werkzeug
documentation for creating middleware for more information on how a
WSGI callable can change a request before passing it on to another callable.

Conclusion
When launched from the command line, the http.server module in Python
serves files from beneath the current working directory. While useful in an
emergency or when inspecting a web site stored on disc, the module is
rarely used to create new HTTP services these days.
In Python, the WSGI standard is frequently used to mediate normal,
synchronous HTTP. Servers scan incoming requests to create an

information dictionary, which applications evaluate before delivering HTTP
headers and an optional response content. This allows you to use any
mainstream Python web framework with any web server. The WSGI
ecosystem does not include asynchronous web servers. Because WSGI
callables aren’t entire coroutines, each async HTTP server must establish its
own pattern for writing services in its own framework. In this situation, the
server and framework are packaged together, with little chance of greater
compatibility. There are four main architectures for providing HTTP from
Python. Gunicorn or other pure-Python server implementations like
CherryPy can be used to run a standalone server. Other architects prefer to
use mod wsgi to run their Python under Apache’s control. Many architects,
however, find it easier to use Gunicorn or another pure now that the concept
of a reverse proxy is a go-to pattern for web services of all kinds. Python
server running directly behind nginx or Apache as a separate HTTP service
to which requests for routes with dynamically produced resources can be
forwarded. Varnish or another reverse proxy can then be placed in front of
any of these patterns to provide a caching layer. Cache instances can be
located in the same machine room (or even on the same machine), but they
are frequently geographically spread to serve certain populations of HTTP
clients. When you use a PaaS provider to host your service, you’ll often get
caching, reverse proxying, and load balancing as part of the package. Your
application’s sole responsibility will be to respond to HTTP requests, which
is typically accomplished through the use of a simple container such as
Gunicorn. The question of whether a service is RESTful, or whether it has
the properties that standards author Dr. Roy Fielding describes as being
intended by the design of HTTP, is a common one. While many services
have moved away from opaque method and path choices that obscured what
the service was doing, few have fully adopted Fielding’s vision of using
hypertext instead of programmer-directed documentation to power
semantics. Small services, especially those that filter or transform an HTTP
request, can be written as a WSGI callable. WebOb or Werkzeug, two
competing solutions, can reduce the raw WSGI environment to an easier-to-
consume Request object, as well as assist you in building your answer with
their Response classes.
The World Wide Web—the massive collection of interconnected documents
that has made the Internet world famous—will be covered in the next
chapter, taking you beyond both general HTTP services and low-level

WSGI programming. You’ll learn how to retrieve and handle hypertext
documents, as well as how to build websites using common web
frameworks

CHAPTER 11
www (world wide web)

The Hypertext Transfer Protocol (HTTP) was introduced in Chapters 9 and
10 as a universal way for clients to request documents and servers to reply
by supplying them.
However, something remained inexplicable. Why does the protocol’s name
begin with the word hypertext? The truth is that HTTP was not created just
as a new method of file transport. It’s not just a clever caching system. FTP
and other outdated file transfer protocols are no longer supported (see
Chapter 17). While it is unquestionably capable of doing so, The World
Wide Web was designed with HTTP in mind.

Structure:
URLs and hypermedia
Creating and Parsing URLs
URLs that are relative
HTML(Hypertext Markup language)
Using a Database to Read and Write
A Horrible Internet Program (in Flask)
The HTTP Methods and Forms Of Dance
When Forms Use Inappropriate Methods
Cookies that are safe and those that are not
Cross-Site Scripting that isn’t persistent
Cross-Site Scripting that Remains Persistent
Forgery of Cross-Site Requests
The Enhanced Software
Django’s Payments Application

Choosing a Framework for a Website
WebSockets
Scraping the Internet
Obtaining Pages
Pages for Scraping
Recursive Scraping
Conclusion

Objectives:
We will learn about HTTP’s goal is significantly more ambitious than that
of stand-alone documents like books, photos, and video: to allow servers all
over the world to publish papers that become an one interconnected fabric
of knowledge through mutual cross-references.

URLs and hypermedia
For thousands of years, books have referred to other books. A human, on
the other hand, must perform each reference by retrieving the other book
and flipping the pages until the cited paragraph is located. The World Wide
Web (WWW, or simply “the Web”) has realised the dream of delegating the
responsibility of resolving the reference to the computer.
A hyperlink is created when idle text, such as “the discussion of cookies in
Chapter 9,” becomes underlined and clickable on a computer screen, and a
click sends you to the material it refers to. Hypertext documents are whole
documents with hyperlinks incorporated in the text. A printed book’s words
“see page 103” does not have the power to transport you to the destination
it depicts. The browser displaying a hyperlink, on the other hand, has this
capability.
The universal resource location (URL) was created to power hypermedia. It
provides a uniform mechanism for referencing not only modern hypertext
documents, but also ancient FTP files and Telnet servers. Many of these
instances can be found in the address bar of your web browser.
Some sample URLs
https://www.python.org/
http://en.wikipedia.org/wiki/Python_(programming_language)

http://localhost:8000/headers
ftp://ssd.jpl.nasa.gov/pub/eph/planets/README.txt
telnet://rainmaker.wunderground.com

The scheme, which names the protocol via which a page can be obtained, is
the first label, such as https or http. The hostname and optional port number
appear after the colon and two slashes:/. Finally, a path chooses one
document from among all those that might be available on a service. This
syntax can be used for more than only describing material that has to be
retrieved from a network.
A uniform resource identifier (URI) is a more general concept that can be
used to identify physical network-accessible documents or as a generic
unique identifier for giving computer-readable names to conceptual things,
such as labels called uniform resource names (URNs). Everything in this
book will be a hyperlink.
By the way, the pronunciation of URL is you-are-ell. An “earl” is a member
of the British aristocracy whose position is not exactly that of a marquis but
is higher than that of a viscount—in other words, an earl is the continental
counterpart of a count (not, in other words, a network document address).
The URL is extended with a query string that starts with a question mark (?)
and utilises the ampersand character (&) to delimit each further parameter
when a page is automatically created based on parameters given by the user.
A name, an equals sign, and a value are all included in each parameter.
https://www.google.com/search?q=apod&btnI=yes

Finally, a URL might be suffixed with a fragment that identifies the specific
spot on the page to which the link points.
http://tools.ietf.org/html/rfc2324#section-2.3.2

The fragment is distinct from the rest of the URL’s components. Because a
web browser assumes it needs to fetch the complete page specified by the
route in order to find the element named by the fragment, the fragment is
not actually sent in the HTTP request! When a browser downloads an
HTTP URL, all the server can learn from it is the hostname, path, and
query. The path and query are concatenated to produce the full path that
follows the HTTP method on the first line of the request, as you recall from
Chapter 9. The hostname is delivered as the Host header, and the path and
query are concatenated to produce the full path that follows the HTTP
method on the first line of the request.

If you look over RFC 3986 closely, you’ll see a few extra features that are
rarely used. It is the definitive reference to consult when you come across
unusual features you want to learn more about, such as the ability to include
a user@password authentication string directly in the URL.

Creating and Parsing URLs
The built-in urllib.parse module in the Python Standard Library gives you
the tools you’ll need to both interpret and construct URLs. A single
function call is all it takes to break down a URL into its constituent parts. It
returns a tuple, which you may still view and access via integer indexing—
or tuple unpacking in an assignment statement—in earlier versions of
Python.
>>> from urllib.parse import urlsplit
>>> u = urlsplit(‘https://www.google.com/search?
q=apod&btnI=yes’)
>>> tuple(u)
(‘https’, ‘www.google.com’, ‘/search’, ‘q=apod&btnI=yes’, ‘’)
But the tuple also supports named attribute access to its
items to help make your code more readable when you
are inspecting a URL.
>>> u.scheme
‘https’
>>> u.netloc
‘www.google.com’
>>> u.path
‘/search’
>>> u.query
‘q=apod&btnI=yes’
>>> u.fragment
‘’

Netloc, the “network location,” can have numerous subordinate
components, but they’re uncommon enough that urlsplit() doesn’t divide
them as separate items in its tuple. They are only available as properties of
the result.
>>> u = urlsplit(‘https://bpb:online@localhost:8000/’)
>>> u.netloc

‘bpb:online@localhost:8000’
>>> u.username
‘bpb’
>>> u.password
‘online’
>>> u.hostname
‘localhost’
>>> u.port
8000

Only half of the parsing process involves breaking down a URL into parts.
Characters that had to be escaped before becoming part of the URL can
appear in both the path and query components. & and #, for example,
cannot be used literally because they delimit the URL. The character / must
also be escaped if it appears within a path component, as the slash is used to
divide path components.
The query portion of a URL has its own set of encoding requirements.
Because query values frequently contain spaces (consider all of the Google
searches that include a space), the plus symbol + is specified as an
alternative way of encoding spaces in queries. Otherwise, the query string
would only have the option of encoding spaces as a percent 20 hexadecimal
escape code, just like the remainder of the URL.
The only correct way to parse a URL that accesses your site’s “Q&A”
section in order to access the “TCP/IP” part and search for information
regarding “packet loss” is to do it as follows:
>>> from urllib.parse import parse_qs, parse_qsl, unquote
>>> u = urlsplit(‘http://example.com/Q%26A/TCP%2FIP?
q=packet+loss’)
>>> path = [unquote(s) for s in u.path.split(‘/’)]
>>> query = parse_qsl(u.query)
>>> path
[‘’, ‘Q&A’, ‘TCP/IP’]
>>> query
[(‘q’, ‘packet loss’)]

Because this path is an absolute path that starts with a slash, my splitting of
the path with split() yields an initial empty string.

Because a URL query string permits a query parameter to be specified
several times, the query is presented as a list of tuples rather than a simple
dictionary. You can feed the list of tuples to dict() and only see the last
value given for each parameter if you’re building code that doesn’t care
about this possibility. If you want a dictionary but also want to allow
multiple values for a parameter, go from parse qsl() to parse qs() and you’ll
receive a dictionary with lists as values.
>>> parse_qs(u.query)
{‘q’: [‘packet loss’]}

The Standard Library contains all of the essential procedures to reverse the
process. By quoting each path component, connecting them back together
with slashes, encoding the query, and giving the result to the “unsplit”
procedure, which is the inverse of the urlsplit() function called earlier,
Python can reconstruct the URL from its pieces.
>>> from urllib.parse import quote, urlencode, urlunsplit
>>> urlunsplit((‘http’, ‘example.com’,
... ‘/’.join(quote(p, safe=’’) for p in path),
... urlencode(query), ‘’))
‘http://example.com/Q%26A/TCP%2FIP?q=packet+loss’

If you carefully delegate all URL parsing to these Standard Library
methods, you should discover that all of the finer points of the whole
specification are handled for you.
Some programmers could even describe the code in the previous examples
as fussy, because it is so flawless. or perhaps exaggerated. When it comes to
path components, how often do they have slashes in them? The majority of
websites are Path elements, sometimes known as slugs by developers,
should be carefully designed so that they never require unattractive
escaping to appear in a document. URL. If a site only permits letters, digits,
dashes, and underscores in URL slugs, there’s a risk that a slug will be
mistyped. It’s clear that could include a slash is out of place. If you’re
positive you’re working with routes that don’t include any escaped slashes
inside individual path components, you can just expose the entire path to
quote() and unquote() without dividing it.
>>> quote(‘Q&A/TCP IP’)
‘Q%26A/TCP%20IP’
>>> unquote(‘Q%26A/TCP%20IP’)

‘Q&A/TCP IP’

In reality, the quote() method anticipates this to be the case, since its default
option is safe=’/’, which ignores slashes in most cases. That was overridden
in the picky version of the code by safe=”.
The urllib.parse module in the Standard Library offers a few more
specialised procedures than the ones listed above, such as urldefrag(),
which splits the URL apart from its fragment at the # character. Read the
documentation to learn more about this and other functions that can help
with a few unique situations.

URLs that are relative
The “change working directory” command in your filesystem command
line defines the position where the system will begin exploring relative
paths without a leading slash. Paths that begin with a slash expressly
declare that they will begin their search at the filesystem’s root. They’re
absolute pathways, meaning they always refer to the same location,
regardless of where you’re working.
$ wc -l /var/log/dmesg
977 dmesg
$ wc -l dmesg
wc: dmesg: No such file or directory
$ cd /var/log
$ wc -l dmesg
977 dmesg

The concept of hypertext is the same. If all of the links in a document are
absolute URLs, such as the ones in the previous section, the resource to
which each of them links is clear. If the document contains relative URLs,
however, the document’s own location must be taken into consideration.
Python has a urljoin() function that comprehends the full standard in its
entirety. You can use urljoin() to fill in any missing information from a
URL that you’ve recovered from inside a hypertext document, which can be
relative or absolute. No problem if the URL was absolute to begin with; it
will be returned unaltered. urljoin() uses the same argument order as
os.path.join() (). Provide the basic URL of the document you’re looking at

first, followed by the URL you discovered within it. A relative URL can
rewrite elements of its base in numerous distinct ways.
>>> from urllib.parse import urljoin
>>> base = ‘http://tools.ietf.org/html/rfc3986’
>>> urljoin(base, ‘rfc7320’)
‘http://tools.ietf.org/html/rfc7320’
>>> urljoin(base, ‘.’)
‘http://tools.ietf.org/html/’
>>> urljoin(base, ‘..’)
‘http://tools.ietf.org/’
>>> urljoin(base, ‘/dailydose/’)
‘http://tools.ietf.org/dailydose/’
>>> urljoin(base, ‘?version=1.0’)
‘http://tools.ietf.org/html/rfc3986?version=1.0’
>>> urljoin(base, ‘#section-5.4’)
‘http://tools.ietf.org/html/rfc3986#section-5.4’

Again, providing an absolute URL to urljoin() is perfectly safe because it
will determine that it is completely self-contained and return it unchanged
from the original URL.
>>> urljoin(base, ‘https://www.google.com/search?
q=apod&btnI=yes’)
‘https://www.google.com/search?q=apod&btnI=yes’

Because a relative URL can omit the scheme but describe everything else,
it’s straightforward to create web pages that are agnostic about whether
they’re served via HTTP or HTTPS, even on static parts of a website. Only
the scheme is replicated from the base URL in this situation.
>>> urljoin(base, ‘//www.google.com/search?q=apod’)
‘http://www.google.com/search?q=apod’

If you’re going to use relative URLs on your site, you’ll need to be very
careful about whether or not your pages have a trailing slash, because a
relative URL might signify two different things depending on whether or
not the following slash is there.
>>> urljoin(‘http://tools.ietf.org/html/rfc3986’, ‘rfc7320’)
‘http://tools.ietf.org/html/rfc7320’
>>> urljoin(‘http://tools.ietf.org/html/rfc3986/’, ‘rfc7320’)
‘http://tools.ietf.org/html/rfc3986/rfc7320’

What appears to be a minor distinction between these two base URLs is
critical to the meaning of any relative links! The first URL is equivalent to
accessing the html directory in order to show the rfc3986 file that it finds
there, leaving the html directory as the “current working directory.”
Because only directories can take a trailing slash in a real filesystem, the
second URL treats rfc3986 as the directory it is accessing.
As a result, the relative link formed on top of the second URL begins at the
rfc3986 component rather than the parent html component. Always build
your site so that a user who enters a URL that is incorrectly written is
quickly redirected.
to the right track For example, if you try to visit the second URL from the
previous example, you will be redirected to the IETF website. The web
server will notice the erroneous trailing slash and respond with a Location:
header containing the proper URL.
If you ever create a web client, remember that relative URLs are not always
relative to the path that you specify. as part of your HTTP request! Relative
URLs should be used if the site wishes to respond with a Location header.
built in relation to the alternate location.

HTML(Hypertext Markup language)
There are entire libraries dedicated to the essential document formats that
fuel the Internet. There are also active standards that describe the hypertext
document format, the mechanisms for styling them with Cascading Style
Sheets (CSS), and the API through which a browser-embedded language
like JavaScript (JS) can make live changes to a document as the user
interacts with it or as more data is retrieved from the server. The following
are the basic standards and resources:
Because this is a book about network programming, I’ll focus on how these
technologies interact with the network.
The Hypertext Markup Language (HTML) is a method of embellishing
ordinary text with an almost absurd amount of angle brackets—that is, the
less-than and greater-than marks reimagined as opening and closing
brackets. Each pair of angle brackets creates a tag that either opens a new
element in the document or closes an element that was already opened, as

indicated by the initial slash. A basic paragraph containing a bolded word
and an italicised word can look like this:
<p>This is a paragraph with bold and <i>italic</i> words.</p>
Some tags, such as the br> tag that generates a mid-paragraph line break,
are self-contained and do not require a corresponding closing tag to occur
afterwards. Authors who be more conscientious type this as the self-closing
tag br/>instead, a habit they picked up from the Extensible Markup
Language (XML), however HTML makes this optional.
Many things, including proper closing tags, are optional in HTML. Whether
or not an actual /li> tag was encountered, when an ul> unordered list
element finishes, a conforming parser will also recognise that the particular
list element li> that it has been reading is now closed and ended.
HTML is concentric, as evidenced by the preceding example paragraph. A
designer can arrange pieces in several ways. As they build a complete web
page out of boxes, they nest items inside of other elements. As the creator,
They nearly always end up recycling elements from the limited set defined
by HTML for multiple different projects. on the page’s goals Despite the
fact that the new HTML5 standard allows for the creation of new elements
on the fly in the middle of a page, designers tend to stick with the
conventional ones. A huge page might employ a generic tag like <div> (the
most generic type of box) or (the most generic type of box). for a
dozen different functions each) as a generic way to mark flowing text.
When all div> elements are the same tag, how can CSS style each element
appropriately and JavaScript allow the user to interact with them
differently?
The answer is that the HTML author can give each element a class that
serves as a more particular label with which it can be addressed. When it
comes to employing classes, there are two general techniques.
The designer’s blanket strategy is to assign a unique class to each and every
HTML element in their design.
<div class=”weather”>
<h5 class=”city”>Provo</h5>
<p class=”temperature”>61°F</p>

</div>

Their CSS and JavaScript might then refer to these components with
selectors like.city and.temperature, or h5.city and p.temperature if they
wanted to be more particular. The most basic CSS selector consists of a tag
name followed by a period-prefixed class name, with any of these options.
Alternatively, the designer may believe that a <h5> can only serve one
purpose inside one of their weather symbols, and that a paragraph can only
serve one purpose, and thus choose to decorate only the outside element
with a class.
<div class=”weather”><h5>Provo</h5><p>61°F</p></div>

They’d have to use more complicated patterns now to express that they
want the <h5> and <p> that exist inside a div> with the class that
distinguishes its type of <div>. Whitespace-concatenating the pattern that
matches the outer tag with the pattern for the inner tag creates patterns.
.weather h5
.weather p

To understand about all of the options accessible beyond these basic
possibilities, consult the CSS standard or an introduction to CSS. If you
want to discover how selectors can be used to target components from live
code running in the browser, you can read an introduction to JavaScript or a
strong document manipulation library like jQuery.
With two characteristics of a modern browser like Google Chrome or
Firefox, you can look at how your favourite websites package information.
If you press Ctrl+U, they’ll show you the HTML code for the page you’re
looking at, complete with syntax highlights. As illustrated in Figure 11-1,
you can right-click any element and select Inspect Element to bring up
debugging tools that help you study how each document element interacts
to the material on the page.
You may also move to the Network tab while in the inspector to see all of
the other resources that were downloaded and displayed as a result of
visiting the page.
It’s worth noting that the Network pane (shown in Figure 11-2), by default,
is empty. Once you’ve got it up and running, click Reload to watch it fill up
with data.
Be aware that depending on whether JavaScript has gone to work and added
or removed elements from the page after the first page load, the live

document you study with Inspect Element may have little or no similarity to
the HTML that was originally supplied as the page’s source. If an element
in the inspector piques your attention but you can’t find it in the original
code, you’ll need to use the debugger’s Network tab to figure out which
extra resources JavaScript is retrieving and how it might have been used to
create those extra page items. As you begin to play with little web
applications in the following programme listings, you should utilise your
browser’s Inspect Element capability to inspect the pages that the
programmes return as much as possible.

Using a Database to Read and Write
Consider a simple bank application that allows account holders to transmit
payments to one another using a web application. At the absolute least, such
an application will require a table of payments, a method of inserting a new
payment, and a method of retrieving and displaying all payments associated
with the currently logged-in user’s account.
Listing 11-1 shows a small library that uses the SQLite database included
with the Python Standard Library to demonstrate all three of these
functionalities. As a result, the listing should function anywhere Python is
installed!

Listing 11-1. A Procedure for Creating and Communicating with a
Database
#!/usr/bin/env python3

Programming in Python: The Basics

A small library of database routines to power a payments

application.

import os, pprint, sqlite3

from collections import namedtuple

def open_database(path=’bank.db’):

new = not os.path.exists(path)

db = sqlite3.connect(path)

if new:

c = db.cursor()

c.execute(‘CREATE TABLE payment (id INTEGER PRIMARY KEY,’

` debit TEXT, credit TEXT, dollars INTEGER, memo TEXT)’)

add_payment(db, ‘john’, ‘psf’, 125, ‘Registration for PyCon’)

add_payment(db, ‘john’, ‘liz’, 200, ‘Payment for writing that

code’)

add_payment(db, ‘jason’, ‘john’, 25, ‘Gas money-thanks for

the ride!’)

db.commit()

return db

def add_payment(db, debit, credit, dollars, memo):

db.cursor().execute(‘INSERT INTO payment (debit, credit,

dollars, memo)’

‘ VALUES (?, ?, ?, ?)’, (debit, credit, dollars, memo))

def get_payments_of(db, account):

c = db.cursor()

c.execute(‘SELECT * FROM payment WHERE credit = ? or debit =

?’

‘ ORDER BY id’, (account, account))

Row = namedtuple(‘Row’, [tup[0] for tup in c.description])

return [Row(*row) for row in c.fetchall()]

if __name__ == ‘__main__’:

db = open_database()

pprint.pprint(get_payments_of(db, ‘john’))

Because the SQLite engine stores each database in a single file on disc, the
open database() function can identify whether the database is being created
or merely reopened by checking for the file’s existence. When you create
the database, it creates a single payment table and populates it with three
sample payments so that your web application doesn’t just display an empty
list of payments. The schema is overly simplistic, but it’s all that’s required
to get this application up and running. A users’ table for usernames and safe
password hashes, as well as an official table of bank accounts where money
may come from and be stored to, would be required in real life. This
programme allows the user to create example account names as they type,
rather than being realistic.
The fact that all of the inputs to the SQL calls in this example are
appropriately escaped is an important point to note. Programmer failure to
correctly escape special characters while submitting them to an interpreted
language like SQL is a key source of security issues today. What if a
malicious user of your web front end figures out a method to insert specific

SQL code into the memo field? To cite data correctly, the greatest
protection is to rely on the database itself, rather than your own logic.
Instead of trying to do any escaping or interpolation on its own, Listing 11-
1 handles it right by sending SQLite a question mark (?) anywhere the code
wants a value interpolated.
Another important step is to combine the raw database entries into
something more intelligible. The fetchall() method is part of the DB-API
2.0, which all recent Python database connectors provide for compatibility.
Furthermore, for each row returned from the database, it does not return an
object or even a dictionary. For each returned row, it returns a tuple.
(1, ‘john’, ‘psf’, 125, ‘Registration for PyCon’)

Handling these raw tuples could have unfavourable consequences. Row[2]
or row[3] in your code may show as “the account credited” or “the quantity
of dollars paid,” making it tough to interpret. As a result, bank.py creates a
named-tuple class that responds to attribute names like row.credit and
row.dollars. Although creating a new class each time SELECT is called is
inefficient, it does give the semantics that online application code requires
with one or two lines of code, allowing you to focus more on the web
application code itself.

A Horrible Internet Program (in Flask)
App insecure.py, which is presented in Listing 11-2, is the first file you
should review. Before answering these questions, it’s a good idea to read
over the code carefully: Is it the kind of dreadful, untrustworthy code that
leads to security breaches and public humiliation? Does it even appear to be
dangerous?

Listing 11-2. (Not Flask’s fault!) An insecure web application
#!/usr/bin/env python3
Programming in Python: The Basics
A poorly-written and profoundly insecure payments
application.
(Not the fault of Flask, but of how we are choosing to use
it!)
import bank
from flask import Flask, redirect, request, url_for

from jinja2 import Environment, PackageLoader
app = Flask(__name__)
get = Environment(loader=PackageLoader(__name__,
‘templates’)).get_template
@app.route(‘/login’, methods=[‘GET’, ‘POST’])
def login():
username = request.form.get(‘username’, ‘’)
password = request.form.get(‘password’, ‘’)
if request.method == ‘POST’:
if (username, password) in [(‘john’, 12345678), (‘sam’,
‘abcde’)]:
response = redirect(url_for(‘index’))
response.set_cookie(‘username’, username)
return response
return get(‘login.html’).render(username=username)

@app.route(‘/logout’)
def logout():
response = redirect(url_for(‘login’))
response.set_cookie(‘username’, ‘’)
return response

@app.route(‘/’)
def index():
username = request.cookies.get(‘username’)
if not username:
return redirect(url_for(‘login’))
payments = bank.get_payments_of(bank.open_database(),
username)
return get(‘index.html’).render(payments=payments,
username=username,
flash_messages=request.args.getlist(‘flash’))

@app.route(‘/pay’, methods=[‘GET’, ‘POST’])
def pay():
username = request.cookies.get(‘username’)
if not username:
return redirect(url_for(‘login’))
account = request.form.get(‘account’, ‘’).strip()
dollars = request.form.get(‘dollars’, ‘’).strip()

memo = request.form.get(‘memo’, ‘’).strip()
complaint = None
if request.method == ‘POST’:
if account and dollars and dollars.isdigit() and memo:
db = bank.open_database()
bank.add_payment(db, username, account, dollars, memo)
db.commit()
return redirect(url_for(‘index’, flash=’Payment successful’))
complaint = (‘Dollars must be an integer’ if not
dollars.isdigit()
else ‘Please fill in all three fields’)
return get(‘pay.html’).render(complaint=complaint,
account=account,
dollars=dollars, memo=memo)

if __name__ == ‘__main__’:
app.debug = True
app.run()

The listing is not only harmful, but it is also vulnerable to many of the most
common attack vectors on the modern Internet! You will understand the
minimal armour that an application requires to live by researching its flaws
in the following sections of this chapter. These flaws are all due to errors in
the site’s data processing, and are unrelated to the question of whether the
site was effectively protected against prying eyes with TLS in the first
place. You Let’s pretend it’s encrypted, perhaps with the help of a reverse
proxy sitting in front of the server. server (see Chapter 10) since I’ll be
thinking about what an attacker could do even if they couldn’t view the
data. transferring data between a certain user and the programme
The programme makes use of the Flask web framework to handle the
essentials of running a Python online application: processing input from
HTML forms (as you will learn in the next section), and answering 404 for
pages that the application does not define next sections), as well as making
it simple to create valid HTTP answers containing either HTML content
from one source or HTML text from another a redirect to another URL or
one of its templates. Visit the Flask documentation at http://flask.pocoo.org/
to learn a lot more about it than what will be covered in this chapter.

http://flask.pocoo.org/

Assume that this list was compiled by programmers who were unfamiliar
with the Internet. They’d heard about template languages that make it
simple to add custom text to HTML, so they figured out how to load and
run Jinja2. They also discovered that the Flask micro-framework is second
only to Django in popularity, and they decided to give it a try because a
Flask application can fit in a single file.
A login() page and a logout() page can be found by reading from top to
bottom. The login screen hard-codes two possible user accounts and
passwords because this app has no real user database. In a moment, you’ll
learn more about form logic, but you can already see that logging in and out
creates and deletes a cookie (see Chapters 9 and 10) that, when present in
subsequent requests, identifies them as belonging to a certain authenticated
user.
The other two pages on the site defend themselves from unauthorised
visitors by looking for this cookie and routing them back to the login page
if there isn’t one. Beyond the check for a logged-in user, the login() view
includes only two lines of code (well, three because of line length): it takes
the current user’s payments from the database and combines them with
some other information to present to the HTML page template.
It seems obvious that the page would want to know the username, but why
does the code look for a message named ‘flash’ in the URL parameters
(which Flask makes available as a request.args dictionary)?
If you read the pay() page, the answer is obvious. The user will be routed to
the index page after a successful payment, but they will most likely want
some indicator that the form had the desired result. A flash message, as web
frameworks call them, is displayed at the top of the page to offer this. (The
name relates to the fact that the message is “flashed” in front of the viewer
when a page is next viewed and then disappears. It has nothing to do with
the previous Adobe Flash system for authoring adverts.) The flash message
is simply conveyed as a query string in the URL in this first iteration of the
web application.
http://example.com/?flash=Payment+successful

The rest of the pay() procedure is a familiar dance to web application
readers: it checks whether a form has been submitted successfully and, if it
has, takes some action. Because the user or browser may have provided or
omitted any of the form arguments, the code uses the request’s get() method

to sensitively and cautiously check for them. If a key is absent, the form
dictionary can return a default (here, the empty string “).
If the request is approved, the payment is saved in the database indefinitely.
Otherwise, the user will be given with the form. Instead of presenting users
with a blank form and an error notice that discards their effort, the code
sends the values they have input back into the template so that they can be
redisplayed if they have already done the work of entering in some
information.
Reviewing the three HTML templates listed in Listing 11-2 will be critical
for the discussion of forms and methods in the following section. Because
the common design features of HTML have been factored out into a base
template, which is the most popular pattern utilised by designers developing
multipage sites, there are actually four templates. The template in Listing
11-3 specifies a page skeleton with insertion points for a page title and a
page body that may be added by other templates. Because of how
beautifully structured the Jinja2 template language is—written by Armin
Ronacher, who also invented Werkzeug (see Chapter 10) and Flask—the
title can be used twice, once in the title> element and once in the h1>
element.
Listing 11-3. Jinja2 Page Jinja2 Template base.html
<html>

<head>
<title>{% block title %}{% endblock %}</title>
<link rel=”stylesheet” type=”text/css”
href=”/static/style.css”>

</head>
<body>

<h1>{{ self.title() }}</h1>
{% block body %}{% endblock %}
</body>

</html>

The Jinja2 template language determines, for example, that you can ask for
a value to be substituted into a template using a double-brace syntax, as in
username, and that brace-percent techniques like percent for percent can be
used to loop and again output the same HTML pattern. For more
information on its syntax and features, visit http://jinja.pocoo.org/.

http://jinja.pocoo.org/

The only elements on the login page shown in Listing 11-4 are the title and
the form itself. For the first time, you can see a pattern that will arise again:
a form element with an initial value=”...” that should already be present in
the editable element when it first shows on the screen.
Listing 11-4. Jinja2 Template login.html
{% extends “base.html” %}
{% block title %}Please log in{% endblock %}
{% block body %}
<form method=”post”>
<label>User: <input name=”username” value=”{{ username }}”>
</label>
<label>Password: <input name=”password” type=”password”>
</label>
<button type=”submit”>Log in</button>

</form>
{% endblock %}

This form will allow the user avoid having to retype their username if they
mistype the password and obtain the same form over and over again by
employing this username replacement into the value=”...”
As you can see from Listing 11-5, the index page that will live at / has a lot
more going on in its template. If there are any flash messages, they will
appear directly below the title. The next section contains an unordered list
(ul>) of list items (li>) that each explain a single payment made to or from
the logged-in user’s account, with the title “Your Payments” shown above
it. Finally, links to the new-payment page and the logout page are provided.

Listing 11-5. Jinja2 Template index.html
{% extends “base.html” %}
{% block title %}Welcome, {{ username }}{% endblock %}
{% block body %}
{% for message in flash_messages %}

<div class=”flash_message”>{{ message }}×
</div>

{% endfor %}
<p>Your Payments</p>

{% for p in payments %}
{% set prep = ‘from’ if (p.credit == username) else ‘to’ %}
{% set acct = p.debit if (p.credit == username) else
p.credit %}
<li class=”{{ prep }}”>${{ p.dollars }} {{ prep }} {{
acct }}
for: <i>{{ p.memo }}</i>

{% endfor %}

Make payment | Log
out
{% endblock %}

It’s worth noting that the code isn’t interested in repeatedly displaying the
current user’s account name as it loops through their incoming and
departing payments. Instead, it determines if the credit or debit account
name that matches the current user is the correct one for each payment, and
then ensures that the other account name is printed instead—with the
correct preposition so that the user can see which way their money has
flowed. This is made feasible by Jinja2’s percent set... percent command,
which enables short tiny presentation calculations like this simple to
implement in-template once the designer recognises what they want. There
appear to be plenty of ways for a user to fill out a form incorrectly, and
Listing 11-6 anticipates receiving a complaint string and displaying it
prominently at the top of the form if one is delivered.
Aside from that, the code is largely the same: three form fields that, if the
form was filled out improperly and is being redisplayed, must be prefilled
with whatever content the user had there when they tried to submit it.

Listing 11-6. Jinja2 Template pay.html
{% extends “base.html” %}
{% block title %}Make a Payment{% endblock %}
{% block body %}
<form method=”post” action=”/pay”>
{% if complaint %}{{ complaint }}
{% endif %}
<label>To account: <input name=”account” value=”{{ account
}}”></label>

<label>Dollars: <input name=”dollars” value=”{{ dollars }}”>
</label>
<label>Memo: <input name=”memo” value=”{{ memo }}”></label>
<button type=”submit”>Send money</button> | Cancel

</form>
{% endblock %}

Every submit button on a website should have an escape path next to it.
Experiments show that users make the fewest mistakes if the escape route is
clearly smaller and less significant than the default action of completing the
form—and that the escape route does not look like a button! As a result,
pay.html takes care to make its “Cancel” escape route a simple link that is
visually isolated from the button by the commonly used pipe symbol (|) in
this visual context.
If you wish to try out this application, go to the source code and type the
following into the chapter 11 directory, which contains bank.py, app
insecure.py, and the corresponding templates/ directory.
$ pip install flask
$ python3 app_insecure.py

The end result should be a message stating that it is up and running, along
with a URL that will print on your screen.
* Running on http://127.0.0.1:5000/
* Restarting with reloader

Flask will even restart itself and reload your application if you alter one of
the listings with debug mode enabled (see the second-to-last line of Listing
11-2), making it possible to swiftly investigate the implications of tiny
changes to the code.
There’s one minor thing that’s lacking here. Where is style.css mentioned in
base.html in Listing 11-3? It’s located in the static/ directory, which is
located adjacent to the application in the source repository. If you’re
interested not only in network programming but also in the concept of web
design, you should take a look at it.

The HTTP Methods and Forms Of Dance

The default action of an HTML form is GET, and it might be as minimal as
a single input field.
<form action=”/search”>
<label>Search: <input name=”q”></label>
<button type=”submit”>Go</button>

</form>

There isn’t enough room in this book to cover form design, which is a big
topic filled with technical decisions. Aside from text fields like this one,
there are a slew of other options to explore. Even text fields are surrounded
by a plethora of alternatives. Will you utilise CSS3 to add some example
text to the input area that vanishes as soon as the user begins typing?
Should the submit button be greyed out until the user has typed a search
query in some in-browser JavaScript code? Should you include instructions
or a few sample search keywords beneath the input area to give the user
some ideas? Should a submit button ever say “Submit,” or should it instead
describe what occurs once the form is sent to the server? Will a minimalist
designer encourage you to remove the Go button entirely, simplifying the
site but requiring users to understand that they can submit their search by
pressing Return?
However, these topics are well covered in web design books and websites.
This book can only deal with the implications of forms for the network.
The input fields of a GET form are directly in the URL, and hence in the
route transmitted with the HTTP request.
GET /search?q=Programming+in+Python+:+The+Basics HTTP/1.1
Host: example.com
Consider what this means. The parameters of a GET are saved in your
browser history, and anyone peering over your shoulder at the address bar
can see them. This means that a GET should never be used to send sensitive
data such as a password or credential. When you submit a GET form, you
are effectively telling the browser, “Where do I want to go next?” and
assisting the browser in creating a custom URL for a page that you want the
server to create so that you can access it. Filling out the previous search
form with three different phrases will create three independent pages, three
entries in your browser history that you may return to later, and three URLs

that you can share with others if you want them to see the same results
page.
You can ask to travel there by simply defining your destination on a form
that conducts a GET request.
The method of a POST, PUT, or DELETE HTML form, on the other hand,
is POST, PUT, or DELETE.
In the case of these forms, no data from the form makes it into the URL
and, as a result, into the path in the HTTP request.
<form method=”post” action=”/donate”>
<label>Charity: <input name=”name”></label>
<label>Amount: <input name=”dollars”></label>
<button type=”submit”>Donate</button>

</form>

When you submit this HTML form, the browser places all of the data into
the body of the request, leaving the path completely empty.
POST /donate HTTP/1.1
Host: example.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 39
name=PyCon%20scholarships&dollars=35

You’re not simply requesting that you go look at a “$35 for PyCon
scholarships” page because you’re curious. Quite the opposite is true. If you
opt to do the POST twice instead of once, you are committing to an action
that will be twice as expensive and have twice the impact. Because “$35 for
PyCon scholarships” is not the name of a site you want to visit, the form
parameters are not included in the URL. It’s what the late philosopher J.L.
Austin referred to as a speech act, or words that produce a change in the
world. By the way, browsers can upload big payloads like complete files
using an alternate form encoding multipart/forms based on the MIME
standard (Chapter 12). The semantics of the POST form are the same in
either case.
By the way, browsers can upload big payloads like complete files using an
alternate form encoding multipart/forms based on the MIME standard
(Chapter 12). The semantics of the POST form are the same in either case.
Form Resubmission Confirmation

The information you supplied was utilised on the page you were
searching for. Any action you did may be repeated if you return to the
page. Do you want to keep going?
In your browser, you should receive a similar warning. When viewing the
form with human eyes, it is evident that the form submission did not go
through; yet, the browser has no means of understanding that the POST did
not go through. It sent a POST, received a page, and for all it knows, the
page says anything along the lines of “Thank you for donating $1,000,” and
submitting it again might have fatal consequences.
There are two strategies that websites can employ to avoid leaving the user
stranded on a page that is the result of a POST, causing unending problems
for the Reload, Forward, and Back buttons on the user’s browser.

Try to prevent the user from providing erroneous values in the first
place by using JavaScript or HTML5 form input limitations. If the
submit button does not light up until the form is ready to submit, or if
the full form round-trip can be handled in JavaScript without reloading
the page, then an incorrect submission—such as the empty form you
submitted just now—will not leave the user stranded at a POST result.
When a form is eventually submitted correctly and its action is done
successfully, the web application should resist the urge to immediately
react with a 200 OK page that details the accomplished activity. Reply
with a 303 See Other redirect to an other URL supplied in the
Location header. This forces the browser to immediately follow up on
the successful POST with a GET that redirects the user to a different
page. The user can now hit Reload, Forward, and Back as many times
as they want, resulting in just safe repeated GETs of the results page
rather than repeated attempts to submit the form.

While the small application in Listing 11-2 is too basic to prevent the user
from seeing a POST response if the form is invalid, it does conduct a
successful 303 See Also powered by the Flask redirect() function Object() {
[native code] } when either the /login form or the /pay form succeeds.

When Forms Use Inappropriate Methods

Misusing HTTP methods in web applications causes issues with automated
tools, user expectations, and the browser.
I recall a buddy whose small-business website was hosted using a home-
grown PHP content management system developed by a local hosting
provider. He was supplied with links to the photos used on his site via an
admin screen.
We highlighted the page and requested that a browser download all of the
links so that he may save a copy of the photographs to his computer.
Minutes later, he received a text from a buddy asking why all of the
photographs on his website had vanished.
The Delete button next to each image turned out to be a fake button that
triggered a POST transaction. Instead, each Delete was just a link to a
regular URL, which had the unintended consequence of removing an image
if you visited it! Because a GET should always, under all circumstances, be
a safe operation, his browser was willing to GET the page’s hundred links.
His web hosting firm had violated his confidence, and as a result, his
website had to be recovered from backups.
The reverse error, using POST to do “read” actions, has less serious
consequences. Rather than erasing all of your files, it simply destroys
usability.
I once had the misfortune of having to use a huge institution’s in-house
search engine. I had a page of results in front of me after numerous searches
that my supervisor wanted to see, so I highlighted the URL and prepared to
put it into an e-mail.
Then I was shocked when I saw the URL. Even though I had no idea how
the server worked, I was confident that when my supervisor visited it,
/search.pl would not put up this page of results by itself!
Because the search form was poorly constructed to use POST, the query
was invisible to my browser’s location bar. This made every every search’s
URL look precisely the same, preventing queries from being shared or
bookmarked. And when I tried to use my browser’s Forward and Back
buttons to traverse through a series of searches, I got a series of pop-up
windows asking if I truly wanted to resubmit each one! Any of those POSTs
might have had adverse effects, according to the browser.

Using GET for locations and POST for actions is critical not only for
protocol compliance but also for a positive user experience.

Cookies that are safe and those that are not
Listing 11-2 shows a web application that tries to protect its users’ privacy.
In response to a GET of the / page, it requires a successful login before
revealing the user’s list of payments. It also requires the user to be signed in
before accepting a POST to the /pay form, which allows the user to make a
money transfer. Unfortunately, it is very simple to take advantage of the app
and make payments on behalf of another user!
Consider what actions a malevolent person who gains access to the site
would take, such as creating a new account to learn more about how it
works. They’ll launch the debugging tools in Firefox or Google Chrome,
then log in to the site and examine the outgoing and incoming headers in
the Network window to see how it works. And what will they get in return
when they enter their account and password?
HTTP/1.0 302 FOUND
...
Set-Cookie: username=badguy; Path=/
...

What a fascinating topic! Their browser has received a cookie named
username, with the value of their own username badguy, as a result of their
successful login. The site appears to be carelessly relying that subsequent
requests containing this cookie must imply that the user inputted their login
and password correctly.
But, certainly, the caller can set any value for this cookie?
They can try to counterfeit the cookie by going through the appropriate
privacy options in their browser, or they can use Python to visit the site.
They might use Requests to see if they can get the first page first. As one
might assume, an unauthenticated request is sent to the /login page.
>>> import requests
>>> r = requests.get(‘http://localhost:5000/’)
>>> print(r.url)
http://localhost:5000/login

What if the bad guy places a cookie that makes it appear that the john user
has already logged in?
>>> r = requests.get(‘http://localhost:5000/’, cookies=
{‘username’: ‘john’})
>>> print(r.url)
http://localhost:5000/

Success! Because the site believes it set the cookie’s value, it is now
treating HTTP requests as if they came from a different user. All the bad
guy needs is the login of another payment system user, and they can falsify
a request to send money anywhere they want.
>>> r = requests.post(‘http://localhost:5000/pay’,
... {‘account’: ‘hacker’, ‘dollars’: 100, ‘memo’: ‘Auto-pay’},
... cookies={‘username’: ‘john’})
>>> print(r.url)
http://localhost:5000/?flash=Payment+successful

It worked, and $100 was transferred from the john account to a bank
account under their control. The lesson is that cookies should never be
constructed in such a way that a user can create one on their own. Assume
that your users are astute, and that disguising their username with base-64
encoding, switching the letters around, or doing a simple exclusive-or of the
value with a constant mask would soon catch on. There are three methods
for making nonforgeable cookies that are both safe and effective.

You can sign the cookie with a digital signature yet leave it viewable.
As a result, attackers are irritated. They’ll see that the cookie contains
their username and hope that they could just rewrite it with the
username of an account they want to take over. However, because they
are unable to fake the digital signature used to sign this new version of
the cookie, they will be unable to persuade your site that the rewritten
cookie is valid.
You can totally encrypt the cookie, making it impossible for the user
to decipher its value. It will appear as an obfuscated value that they
will be unable to analyse or comprehend.
You can use a standard UUID library to generate a fully random string
for the cookie that has no intrinsic meaning, and keep it in your own
database so that you can recognise the cookie as belonging to the user
when they make their next request. If many HTTP requests from the

same user are directed to separate servers, this persistent session
storage will need to be accessible to all of your front-end web
machines. Some apps maintain sessions in their main database, while
others employ a Redis instance or other short-term storage to keep
their main persistent data store from becoming overburdened with
queries.

You may use Flask’s built-in ability to digitally sign cookies so that they
can’t be forged in this example application. On a real production server, the
signing key should be kept separate from the source code, but for this
example, it can be placed towards the top of the source file. Not only does
including the key in the source code for a production system give anyone
with access to your version control system access to the key, but it also
exposes the credential to your developer laptops and continuous integration
process.
app.secret_key = ‘saiGeij8AiS2ahleahMo5dahveixuV4J’

Flask will then utilise the secret key every time you use its unique session
object to set a cookie, like as during login.
session[‘username’] = username
session[‘csrf_token’] = uuid.uuid4().hex

And Flask will utilise the key once more before trusting any cookie values
it extracts from the incoming request. A cookie with an incorrect signature
is presumed to be faked and is treated as if it did not exist at all in the
request.
username = session.get(‘username’)

In Listing 11-8, you can see these enhancements in action.
Another concern with cookies is that they should never be sent over an
unencrypted HTTP channel, as they will be visible to everyone on the same
coffee shop wireless network. Many websites use an HTTP-secured login
page to carefully establish their cookies, only to expose them totally when
the browser downloads all of the CSS, JavaScript, and pictures that are
downloaded over plain HTTP from the same hostname.
Find out how to make your web framework set the Secure parameter on
every cookie you submit to the browser to prevent cookie disclosure. It will
then take care not to include it in unencrypted requests for resources that
everyone has access to in the first place.

Cross-Site Scripting that isn’t persistent
If an opponent is unable to steal or fabricate a cookie that allows their
browser (or Python application) to act on behalf of another user, they can
switch tactics. They will never have to see the cookie if they can figure out
how to take control of another user’s browser while they are logged in. The
cookie will be added in each request if you take actions with that browser.
This type of attack can be approached in at least three ways. The server in
Listing 11-2 is vulnerable to all three, and you’ll learn about them
individually today. The first is a nonpersistent cross-site scripting (XSS)
attack, in which an attacker figures out how to make a web site—such as
the payment system in the example—present attacker-written text as if it
came from the site. Assume the attacker intended to send $110 to a bank
account they had access to. They could write the JavaScript in Listing 11-7.

Listing 11-7. attack.js is a script for making payments.
<script>
var x = new XMLHttpRequest();
x.open(‘POST’, ‘http://localhost:5000/pay’);
x.setRequestHeader(‘Content-Type’, ‘application/x-www-form-
urlencoded’);
x.send(‘account=hacker&dollars=110&memo=Theft’);
</script>

If this code is only visible on the website while the user is signed into the
payments application, the POST request it specifies will fire and make the
payment on the innocent user’s behalf automatically. Because the code
inside script> tags is not visible while viewing a rendered web page, the
user will not notice anything is wrong unless they press Ctrl+U to read the
source code—and even then, they must recognise the script> element as
something strange that is not ordinarily part of the page.
How, on the other hand, could an attacker make this HTML appear? The
explanation is that the attacker can simply inject this HTML into the /
page’s page template via the flash parameter that the code is injecting, raw!
Because the author of Listing 11-2 has not read enough documentation, they
are unaware that Jinja2 in its raw form does not automatically escape
special characters such as and > because it does not know that you are using
it to compose HTML unless you tell it.

The attacker can create a URL that includes their script in the flash
parameter.
>>> with open(‘/home/john/py3/chapter11/attack.js’) as f:

... query = {‘flash’: f.read().strip().replace(‘\n’, ‘ ‘)}

>>> print(‘http://localhost:5000/?’ + urlencode(query))

http://localhost:5000/?

flash=%3Cscript%3E+var+x+%3D+new+XMLHttpRequest

%28%29%3B+x.open%28%27+POST%27%2C+%27http%3A%2F%2Flocalhost

%3A5000%2Fpay%27 %29%3B+x.setRequestHeader%28%27Content

Type%27%2C+%27application% 2Fx-www-form-url-encoded-

%27%29%3B+x.send%28%27account%3Dhacker%

26dollars%3D110%26memo%3DTheft%27%29%3B+%3C%2Fscript%3E

Finally, the attacker must devise a method to persuade the user to view and
click the link.
When targeting a single user, this can be tough. The attacker may need to
imitate an e-mail from one of the victim’s true friends, hiding the link
behind language that the user will wish to click. There is a need for
research, and there are numerous failure modes. The attacker may join the
user’s IRC channel and claim that the link is “an article” regarding a topic
on which the user has just expressed an opinion. Because seeing the entire
link presented previously is likely to make the user suspicious, the attacker
will typically share a truncated link that only expands to the XSS link once
the user clicks it.
When attacking a large site with no unique users, such as a payment
processing system utilised by millions of people, the attacker can often be
less precise. The poisoned link, which was inserted in an appealing spam e-
mail sent to millions of users, may result in a few clicks from those who are
signed into the payment system, generating revenue for the attacker.
Try producing the link with the Requests code you were provided earlier.
Then, while you’re logged in to the payments site and when you’re not,
click it. When you’re logged in, you should notice that each time you reload
the main page, another payment occurs, which is handled automatically on
your behalf by the link you clicked. To check that the JavaScript and
surrounding script> tags have made it into the page, press Ctrl+U in Firefox
or Google Chrome.

If you notice that the attack isn’t working, go to your browser’s JavaScript
console. “The XSS Auditor refused to execute a script...because its source
code was identified within the request,” my version of Chrome said,
detecting and cancelling the attempt. A good modern browser can be
deceived by the crude version of the attack that is being launched here only
if this protection is turned off or if the attacker finds a more sinister
technique to exploit the flash message.
Even if the attack is successful, the user may be suspicious if a blank green
message box appears with no message inside. Try fixing this fault in the
previous URL as an exercise: outside of the script tag, see if you can offer
some real content, such as “Welcome back,” to make the green message
section look more acceptable. The flash message—this bit of contextual
information about what the /pay form just did that the app wants to display
on the next page the user visits—must be removed totally from the URL to
defend against the attack described in Listing 11-8. You can instead leave
the flash message on the server till the next request arrives. Flask, like most
frameworks, already has a method for this with the flash() and get flashed
messages functions ().

Cross-Site Scripting that Remains Persistent
Because seeing the entire link presented previously is likely to make the
user suspicious, the attacker will typically share a truncated link that only
expands to the XSS link once the user clicks it.
When attacking a large site with no unique users, such as a payment
processing system utilised by millions of people, the attacker can often be
less precise. The poisoned link, which was inserted in an appealing spam e-
mail sent to millions of users, may result in a few clicks from those who are
signed into the payment system, generating revenue for the attacker.
Try producing the link with the Requests code you were provided earlier.
Then, while you’re logged in to the payments site and when you’re not,
click it. You can inject your own code. Log in to the application as sam
using the password listed in Listing 11-2, and then try sending me a
payment. Include a polite letter expressing how much you appreciated the
book and why you are tipping me extra. That way, I won’t be suspicious of
your money, hopefully. The fields will appear like this once you’ve added
the script element but before you click “Send money”:

To account: john
Dollars: 1
Memo: A small thank-you.<script>...</script>

Then hit the submit button. Then log out, re-enter as john, and begin hitting
Reload. A new payment will be charged from the john user’s account every
time he views the top page!
As you can see, this persistent cross-site scripting assault is highly effective.
The persistent version—where the JavaScript now appears invisibly and
executes every time the user visits the site—will happen over and over until
the data on the server is erased or deleted, whereas the prior link worked
only when the user clicked it. When XSS assaults were launched using
public form messages on susceptible sites, hundreds of thousands of people
were affected until the problem was fixed. Because its author employed
Jinja2 templates without fully comprehending them, Listing 11-2 is
vulnerable to this vulnerability. It’s evident from their documentation that
they don’t do any automatic escape. Jinja2 will only preserve specific
HTML characters like and > if you know how to turn on its escaping.
By using Jinja2 through the Flask render template() function, Listing 11-8
will guard against any XSS attacks. When it finds that the template
filenames finish with the extension html, it will immediately turn on HTML
escaping. You can opt in to patterns that can safeguard you from bad design
decisions by depending on a common pattern of the web framework rather
than doing things yourself.

Forgery of Cross-Site Requests
XSS attacks should no longer be a problem on your site now that all content
is correctly escaped. But the attacker has one more trick in their sleeve:
they’ll try to submit the form from a whole different website because there’s
no reason for them to start it from yours. They can forecast what all of the
field values should be ahead of time, so they can send a request to /pay
from any web page you visit. If they identify a forum topic in which you are
active on a site that does not correctly escape or remove script tags from
forum comments, all they have to do is encourage you to visit a website
where they have concealed the JavaScript or embed it in a comment. You
might believe that the attacker will need to create a form that is ready to

give them money, and then make the button on that form an enticing target
for your mouse.
<form method=”post” action=”http://localhost:5000/pay”>
<input type=”hidden” name=”account” value=”pam”>
<input type=”hidden” name=”dollars” value=”220”>
<input type=”hidden” name=”message” value=”Someone won big”>
<button type=”submit”>Reply</button>

</form>

Because JavaScript is almost certainly enabled in your browser, they can
simply copy and paste the script> element from Listing 11-7 onto the page,
forum post, or remark you’re about to load, and then sit back and wait for a
payment to appear in their account.
This is a classic cross-site request forgery (CSRF) attack that doesn’t
require the attacker to figure out how to get into the payment system. All
that is required are simple payment forms and any web site—anywhere in
the world—where the attacker may inject JavaScript and where you are
likely to visit. Every web \ssite you visit would need to be safe to protect
against the risk of this injection.
As a result, programmes must safeguard against it.
How can applications protect themselves from CSRF attacks? By making it
harder to complete and submit forms. Rather than creating simple forms
with the bare minimum of fields required to make a payment, they require
an extra field that contains a secret that only the legitimate user of the form
or their browser will ever see; it does not need to be visible to the user
reading and using the form through their browser.to make a payment, they
require an extra field that contains a secret that only the legitimate user of
the form or their browser will ever see; it does not need to be visible to the
user reading and using the form through their browser. Because the attacker
will not know the secret value that each user has concealed in each /pay
form they submit, the attacker will be unable to create a convincing POST
to that address.
Listing 11-8 will leverage Flask’s ability to store secrets safely in cookies to
assign each user a secret random string every time they log in. This
example requires you to suppose, of course, that a payment site would be
secured with HTTPS in real life, so that delivering the secret on a web page
or cookie is secure and cannot be watched in transit. The payments site can

add the per-session random secret silently to every /pay form provided to
the user after selecting one. HTML includes hidden form fields as a
standard feature for reasons such as CSRF protection. In pay2.html, a
replacement for Listing 11-6 that will be utilised by Listing 11-8, the
following field is added to the form:
<input name=”csrf_token” type=”hidden” value=”{{ csrf_token
}}”>

Every time the form is submitted, an additional check is conducted to
ensure that the CSRF value from the form matches what was sent to the
user in the HTML version of the form. If they don’t match, the site
considers an attacker is attempting to submit the form on behalf of the user
and returns a 403 Forbidden error.
The CSRF protection in Listing 11-8 is done manually so you can see all of
the moving components and see how the randomly picked extra field
prevents an attacker from guessing how to assemble a legitimate form. In
practise, CSRF protection should be incorporated into whatever web
framework you pick, or at the very least offered as a standard plug-in.
Several ways are suggested by the Flask community, including one that is
included in the popular Flask-WTF package for creating and parsing HTML
forms.

The Enhanced Software
Listing 11-8 is called app improved.py rather than “perfect” or “secure”
because, to be honest, it’s difficult to guarantee that any given example
programme is fully devoid of potential flaws.

Listing 11-8. The Payments Application app improved.py
#!/usr/bin/env python3
Programming in Python: The Basics
A payments application with basic security improvements
added.
import bank, uuid
from flask import (Flask, abort, flash, get_flashed_messages,
redirect, render_template, request, session, url_for)

app = Flask(__name__)
app.secret_key = ‘saiGeij8AiS2ahleahMo5dahveixuV4J’

@app.route(‘/login’, methods=[‘GET’, ‘POST’])
def login():
username = request.form.get(‘username’, ‘’)
password = request.form.get(‘password’, ‘’)
if request.method == ‘POST’:
if (username, password) in [(‘john’, ‘123456789’), (‘pam’,
‘abcde’)]:
session[‘username’] = username
session[‘csrf_token’] = uuid.uuid4().hex
return redirect(url_for(‘index’))
return render_template(‘login.html’, username=username)

@app.route(‘/logout’)
def logout():
session.pop(‘username’, None)
return redirect(url_for(‘login’))

@app.route(‘/’)
def index():
username = session.get(‘username’)
if not username:
return redirect(url_for(‘login’))
payments = bank.get_payments_of(bank.open_database(),
username)
return render_template(‘index.html’, payments=payments,
username=username,
flash_messages=get_flashed_messages())

@app.route(‘/pay’, methods=[‘GET’, ‘POST’])
def pay():
username = session.get(‘username’)
if not username:
return redirect(url_for(‘login’))
account = request.form.get(‘account’, ‘’).strip()
dollars = request.form.get(‘dollars’, ‘’).strip()
memo = request.form.get(‘memo’, ‘’).strip()
complaint = None
if request.method == ‘POST’:
if request.form.get(‘csrf_token’) != session[‘csrf_token’]:
abort(403)

if account and dollars and dollars.isdigit() and memo:
db = bank.open_database()
bank.add_payment(db, username, account, dollars, memo)
db.commit()
flash(‘Payment successful’)
return redirect(url_for(‘index’))
complaint = (‘Dollars must be an integer’ if not
dollars.isdigit()
else ‘Please fill in all three fields’)
return render_template(‘pay2.html’, complaint=complaint,
account=account,
dollars=dollars, memo=memo,
csrf_token=session[‘csrf_token’])

if __name__ == ‘__main__’:
app.debug = True
app.run()

The Shellshock vulnerability was just announced as I write this: for the past
22 years, the widely used Bash shell has been willing to run any code
presented to it as specially formatted environment variables—like those that
the old CGI mechanism will happily set based on incoming untrusted HTTP
headers—without anyone noticing. It’s difficult to offer guarantees
regarding the total security of a demonstration web application that I
created only for this chapter if significant production software can be
vulnerable to unanticipated features and interactions after more than two
decades. However, here is the list. Its templates conduct correct escaping, it
sends flash messages to internal storage rather than transmitting them
round-trip over the user’s browser, and each form it presents to the user has
a concealed random UUID that makes it hard to counterfeit. It’s worth
noting that two of the significant enhancements—switching to internally
stored flash messages and requesting Jinja2 to execute correct escaping of
characters before adding them to the HTML—were made possible by
relying on Flask’s standard features rather than my own code. This
exemplifies a crucial point. If you read the framework documentation
thoroughly and use as many of its features as possible, your applications
will not only be shorter, more concise, and more convenient to write, but
they will also be more secure because you will be using patterns written by
a professional and carefully improved by the web framework’s entire

community. These conveniences will, in many situations, fix security or
performance issues that you may not even be aware of.
When it comes to network interaction, the application is currently quite
effectively automated. When it comes to the processing of views and forms,
though, there are still a lot of seams to be ironed out. The code must
manually verify that the user is logged in. Each form field must be
manually copied from the request into the HTML to avoid the user having
to retype it. And the database interaction is rather low-level; if you want the
payment to be logged permanently by SQLite, you must open database
sessions manually and then remember to commit.
You might turn to the Flask community for strong best practises and third-
party tools to address these prevalent issues. Instead, for diversity, the last
example will be the same application created in a framework that relieves
you of more of these tasks from day one.

Django’s Payments Application
Because it is a “full-stack” web framework with everything a rookie
programmer needs built in, the Django web framework is perhaps the most
popular among Python programmers today. Django not only has a templates
system and URL routing structure, but it can also communicate with
databases, render results as Python objects, and even compose and interpret
forms without the use of any third-party libraries. A framework that
establishes coherent and safe patterns can be more valuable than a more
flexible tool that sends the programmer hunting for their own ORM and
forms library, when they may not even have a clear idea of how those
pieces fit together in a world where many people programming for the Web
have little training. The Django application can be found in its full in the
book’s source code repository. Here’s the URL for this chapter once more:
https://bpbonline.com/Programming in Python: The
Basics/py3/chapter11

There are a few boilerplate files in this book that aren’t worth quoting in
their whole.

manage.py: This is an executable script in the chapter11/ directory
that allows you to perform Django commands to set up and start the
application in development mode, as you’ll see shortly.

djbank/ init .py: This is an empty file that notifies Python that the
directory is a Python package that can be used to import modules.
djbank/admin.py: This file has three lines of code that display the
Payment model in the Admin interface, as explained in the “Choosing
a Web Framework” section below. Because it is a “full-stack” web
framework with everything a rookie programmer needs built in, the
Django web framework is perhaps the most popular among Python
programmers today. Django not only has a templates system and URL
routing structure, but it can also communicate with databases, render
results as Python objects, and even compose and interpret forms
without the use of any third-party libraries. A framework that
establishes coherent and safe patterns can be more valuable than a
more flexible tool that sends the programmer hunting for their own
ORM and forms library, when they may not even have a clear idea of
how those pieces fit together in a world where many people
programming for the Web have little training.
djbank/wgsi.py: This file contains a WSGI callable that a WSGI-
compliant web server, such as Gunicorn or Apache (see Chapter 10),
can use to start the payments application.

The subsequent four scripts are interesting because they show how the
framework already supports many common patterns that Python code can
use without requiring any changes. Django eliminates the need for the
application to create its own SQL queries thanks to its built-in object-
relational mapper (ORM). With it, the entire issue of appropriate SQL value
quoting vanishes. Listing 11-9 lists the fields of the database table in a
declarative Python class that will be used to represent the table rows when
they are retrieved. If your data limitations go beyond what can be described
by field types alone, Django enables you attach extensive validation logic to
a class like this.

Listing 11-9. For the Django App, he uses models.py.
#!/usr/bin/env python3
Programming in Python: The Basics
Model definitions for our Django application.
from django.db import models
from django.forms import ModelForm

class Payment(models.Model):
debit = models.CharField(max_length=200)
credit = models.CharField(max_length=200, verbose_name=’To
account’)
dollars = models.PositiveIntegerField()
memo = models.CharField(max_length=200)

class PaymentForm(ModelForm):
class Meta:
model = Payment

fields = [‘credit’, ‘dollars’, ‘memo’]

The bottom class declaration instructs Django to create and change database
records using a form. It will just question the user about the three fields
given, leaving the debit field blank so you may fill it in with the username
you’re presently logged in with.
As you’ll see, this class can handle both sides of the user’s interaction with
the web app: it can render the form as a set of HTML fields, and then parse
the HTTP POST data that is returned once the form is submitted in order to
create or edit a Payment database row.
If you’re using a micro-framework like Flask, you’ll need to pick an
external library to handle actions like these. For example, SQLAlchemy is a
well-known ORM, and many programmers prefer not to use Django in
order to take use of SQLAlchemy’s power and elegance.
However, because SQLAlchemy is unaware of HTML forms, the
microframework programmer will need to locate yet another third-party
package to handle the other half of what the prior models.py file does for
the Django programmer.
Instead of employing a Flask-style decorator to attach URL paths to Python
view functions, Django requires the application writer to produce a urls.py
file like the one shown in Listing 11-10. While this makes each view
position-independent and helps to concentrate management of the URL
space, it does provide each view less context when viewed on its own.

Listing 11-10. The Django App’s urls.py file
#!/usr/bin/env python3
Programming in Python: The Basics
URL patterns for our Django application.

from django.conf.urls import patterns, include, url
from django.contrib import admin
from django.contrib.auth.views import login
urlpatterns = patterns(‘’,

url(r’^admin/’, include(admin.site.urls)),
url(r’^accounts/login/$’, login),
url(r’^$’, ‘djbank.views.index_view’, name=’index’),
url(r’^pay/$’, ‘djbank.views.pay_view’, name=’pay’),
url(r’^logout/$’, ‘djbank.views.logout_view’),
)

When a URL contains numerous variable sections, Django makes the odd
decision to utilise regular expression matching to match them, which can
result in difficult-to-read patterns. They can also be tough to troubleshoot,
as I know from personal experience.
Except that the path to the login page is where the Django authentication
module expects it to be, these patterns provide essentially the same URL
space as the prior Flask apps. This method relies on the standard Django
login page to have gotten things right, rather than developing your own
login page and hoping you write it correctly and without some subtle
security fault. The views in Listing 11-11 that finally tie this Django
application together are both simpler and more sophisticated than the Flask
version of the app’s comparable views.

Listing 11-11. The Django App’s views.py file
#!/usr/bin/env python3

Programming in Python: The Basics

A function for each view in our Django application.

from django.contrib import messages

from django.contrib.auth.decorators import login_required

from django.contrib.auth import logout

from django.db.models import Q

from django.shortcuts import redirect, render

from django.views.decorators.http import require_http_methods,

require_safe

from .models import Payment, PaymentForm

def make_payment_views(payments, username):

for p in payments:

yield {‘dollars’: p.dollars, ‘memo’: p.memo,

‘prep’: ‘to’ if (p.debit == username) else ‘from’,

‘account’: p.credit if (p.debit == username) else p.debit}

@require_http_methods([‘GET’])

@login_required

def index_view(request):

username = request.user.username

payments = Payment.objects.filter(Q(credit=username) |

Q(debit=username))

payment_views = make_payment_views(payments, username)

return render(request, ‘index.html’, {‘payments’:

payment_views})

@require_http_methods([‘GET’, ‘POST’])

@login_required

def pay_view(request):

form = PaymentForm(request.POST or None)

if form.is_valid():

payment = form.save(commit=False)

payment.debit = request.user.username

payment.save()

messages.add_message(request, messages.INFO, ‘Payment

successful.’)

return redirect(‘/’)

return render(request, ‘pay.html’, {‘form’: form})

@require_http_methods([‘GET’])

def logout_view(request):

logout(request)

return redirect(‘/’)

Where is the cross-site scripting protection? That is the big question you
should be asking. When I asked Django to generate the skeleton for this
application with the manage.py startapp command, it was instantly added to
settings.py and turned on!
Your forms will refuse to work unless you remember to add percent csrf
token percent to your form template, even if you are unaware that CSRF
protection exists. And, in case you forgot, the Django error message
provided by its runserver development mode clarifies the necessity. This is
a very effective pattern for inexperienced web developers who are

unfamiliar with the difficulties at hand: In a way that microframeworks
seldom match, the Django default will often make them safe from the most
common catastrophic failures with forms and fields.
Because this code relies on built-in Django functionality for practically
everything instead of having to develop things like login and session
manipulation, the views in this application are conceptually simpler than
their Flask-powered counterparts. Because urls.py merely utilises Django’s,
the login page does not show. The logout page can just call logout() without
worrying about the details. By using the @login required attribute on views,
you can avoid worrying about whether or not the user is signed in. The only
helper that directly matches to a similar functionality in our Flask project is
the @require http_ methods() decorator, which provides the same
protection against invalid or unsupported HTTP methods as Flask’s own
view decorators.
Working with the database has never been easier. The bank.py module,
along with accompanying SQL, is no longer available.
Django has already opted to set up a SQLite database (one of the defaults in
settings.py), and it is ready to create a database session the instant the code
searches the model class from the models.py file. Because it is a “full-
stack” web framework with everything a rookie programmer needs built in,
the Django web framework is perhaps the most popular among Python
programmers today. Django not only has a templates system and URL
routing structure, but it can also communicate with databases, render results
as Python objects, and even compose and interpret forms without the use of
any third-party libraries. A framework that establishes coherent and safe
patterns can be more valuable than a more flexible tool that sends the
programmer hunting for their own ORM and forms library, when they may
not even have a clear idea of how those pieces fit together in a world where
many people programming for the Web have little training. One annoyance
is that a piece of logic that should have been in the template—the choice of
wording and presentation around the display of payments on the main page
—has now had to be moved into the Python code because the Django
template system does not make the logic as easy to express. The index()
view in Python, on the other hand, calls a generator that generates a dict of
information about each payment, turning the raw object into the data that
the template is interested in.

Some programmers are irritated by the lack of power in the template
system. Others learn to create Django “template tags,” which allow them to
call logic from deep within a template. Others say that code like Listing 11-
11 is better in the long term since tests for a procedure like make payment
views() are easier to build than for logic stranded inside a template.
To execute this Django application, get the source code for Chapter 11 from
the link above, install Django 1.7 under Python 3, and perform the
following three commands:
$ python manage.py syncdb
$ python manage.py loaddata start
$ python manage.py runserver

You can now go to http://localhost:8000/ after running the previous
command. and see how Django has allowed you to build a similar
application to the one you created with Flask earlier in this chapter.

Choosing a Framework for a Website
The web framework landscape, like the Python programming language, is
continually innovating in a vibrant and healthy community. Although it will
most likely make this book look ancient in a few years, here’s a quick
rundown of the most common frameworks to give you an idea of the
options available to a regular developer:

Django: An excellent framework for newcomers to web
programming. There are built-in features such as CSRF prevention. It
has a built-in ORM and template language. Not only does this save the
novice from having to pick their own libraries, but it also ensures that
all third-party Django tools may use the same set of interfaces to
interact with HTML and the database. Try visiting the /admin page
after running Listing 11-11 to see an example of how administrators
can interact directly with the database using automatically generated
create, edit, and delete forms!
Tornado: A web framework unlike any other on this list since it
employs the asynchronous callback mechanism from Chapter 9 to
handle many dozens or hundreds of client connections per operating
system thread, rather than just one. It also distinguishes out because it
isn’t restricted to supporting WSGI and instead supports WebSockets

directly (described in the next section). The price is that many libraries
struggle to operate with its callback structure, forcing programmers to
look for async alternatives to the conventional ORM or database
connection.
Flask: The most widely used microframework, built on robust tools
and enabling a wide range of current features (if the programmer
knows to look for and take advantage of them). Frequently used in
conjunction with SQLAlchemy or a nonrelational database.
Bottle: A Flask alternative that just requires the installation of one
file, bottle.py, rather than numerous distinct packages. Developers
who haven’t yet integrated the pip install tool into their workflow will
find it particularly appealing. It has a particularly well-designed
template language.
Pyramid: A remarkable and high-performance synthesis of lessons
learned by community members in the old Zope and Pylons
communities, Pyramid is the go-to framework for developers working
in fluid URL spaces, such as those created when you author a content
management system (CMS) that allows users to create subfolders and
additional web pages with a single mouse click. While it can support
predefined URL structures just like any of the previous frameworks, it
can also support object traversal, which means the framework
understands that your URL components are naming containers,
content, and views that the URL is visiting, much like a filesystem
path visits directories before arriving at a file. The web framework
landscape, like the Python programming language, is continually
innovating in a vibrant and healthy community. Although it will most
likely make this book look ancient in a few years, here’s a quick
rundown of the most common frameworks to give you an idea of the
options available to a regular developer:
Django: An excellent framework for newcomers to web
programming. There are built-in features such as CSRF prevention. It
has a built-in ORM and template language. Not only does this save the
novice from having to pick their own libraries, but it also ensures that
all third-party Django tools may use the same set of interfaces to
interact with HTML and the database.

You might be tempted to choose a web framework based on its reputation—
perhaps based on the preceding paragraphs, as well as a thorough
examination of their websites and what you find on social networking sites
or Stack Overflow.
But I’ll point you in a different direction: if you have coworkers or friends
at your local Python meetup who are already fans of a framework and can
provide you with regular support via e-mail or IRC, you might want to
choose that framework over a similar one whose website or feature list you
prefer less. Having live assistance from someone who has already dealt
with the common error messages and misunderstandings can frequently
outweigh whether a certain feature of the framework is slightly more or less
difficult to use.

WebSockets
Web sites that use JavaScript frequently seek to allow users to edit their
content in real time. Whether someone tweets, Twitter wants to refresh the
page you’re viewing without having to check the browser every second to
see if anything new has shown. The most powerful and turbocharged of the
conceivable solutions to this “extended polling problem” is the Websocket
Protocol (RFC 6455).
Earlier workarounds, such as the well-known Comet approaches, were
conceivable. The client sends an HTTP request to a path; the server hangs,
leaving the socket open, and waits to respond until an actual event (such as
a new incoming tweet) occurs and can be provided in the response. Because
WSGI only supports traditional HTTP, you’ll need to look beyond standard
web frameworks and the complete range of WSGI-compatible web servers
like Gunicorn, Apache, and nginx to enable WebSockets.
One of the main reasons for the popularity of the standalone Tornado
server-framework is that WSGI does not support WebSockets.
Unlike HTTP, which runs in lockstep, where the client sends a single
request and then waits for the server to complete its response before
sending another, a socket in WebSockets mode allows messages to move in
either direction at any time without waiting for each other. You might be
tempted to choose a web framework based on its reputation—perhaps based

on the preceding paragraphs, as well as a thorough examination of their
websites and what you find on social networking sites or Stack Overflow.
But I’ll point you in a different direction: if you have coworkers or friends
at your local Python meetup who are already fans of a framework and can
provide you with regular support via e-mail or IRC, you might want to
choose that framework over a similar one whose website or feature list you
prefer less. Having live assistance from someone who has already dealt
with the common error messages and misunderstandings can frequently
outweigh whether a certain feature of the framework is slightly more or less
difficult to use. The documentation for the tornado.websocket module,
which offers a bit of Python and JavaScript code that can communicate with
each other via a pair of symmetric callbacks, is a good place to start. For
ideas on how to use such a system to enable live changes to web pages,
look up any decent reference on asynchronous front-end browser
programming.

Scraping the Internet
The amount of programmers who begin their web programming careers by
attempting to scrape a website is likely to outnumber those who begin by
creating their own example site. After all, how many new programmers
have access to large stacks of data waiting to be presented on the Web vs
how many can quickly conceive of material currently on the Web that
they’d like to copy?
The first piece of web scraping advice is to avoid it as much as possible.
Apart from basic scraping, there are a variety of approaches to obtain data.
It is less expensive to use such data sources not just for you, the coder, but
also for the site itself. The Internet Movie Database will let you to get
movie data from www.imdb.com/interfaces in order to run statistics across
Hollywood films without forcing the main site to produce hundreds of
thousands of extra pages, which you will then have to interpret! Many
websites, including Google and Yahoo, offer APIs for their key services,
which can assist you avoid receiving raw HTML in return.
If you’re looking for data on Google but can’t find any download or API
alternatives, there are a few things to keep in mind. Look for a “Terms of
Service” page for the site you’re interested in. Check for a /robots.txt file,

http://www.imdb.com/interfaces

which will inform you which URLs are intended for search engines to
download and which should be avoided. This can help you avoid receiving
many versions of the same article with various advertisements, while also
assisting the site in managing its load.
Following the Terms of Service and robots.txt might also reduce the
likelihood of your IP being blacklisted for generating excessive traffic.
Scraping a website will, in the most common instance, necessitate what
you’ve learned about HTTP and how web browsers use it in Chapter 9,
Chapter 10, and this chapter.

The GET and POST methods, as well as how a method, path, and
headers combine to produce an HTTP request
HTTP response status codes and structure, including the distinction
between success, redirect, temporary failure, and permanent failure
Form-based authentication and how it sets cookies that must be
present in your later requests for them to be assessed valid
Basic HTTP authentication—both how it is expected by a server
answer and then delivered in a client request
JavaScript-based authentication, in which the login form sends a direct
POST to the web server without involving the browser in the
submission process.
The difference between a query or action that appends data to the URL
and performs a GET for that location versus an action that does a
direct POST of data to the server that is carried as the request body
instead of a query or action that appends data to the URL and
performs a GET for that location to protect the site from CSRF attacks
The difference between POST URLs, which are designed to receive
form-encoded data from the browser, and URLs, which are designed
to interface directly with front-end JavaScript code and are thus more
likely to expect and deliver data in JSON or another programmer-
friendly format.

Scraping a complex site can take hours of trial and error, as well as
extended sessions of scrolling around in your browser’s web developer
tools to figure out what’s going on. Three tabs are required, and once
you’ve right-clicked a page and selected Inspect Element, all three should

appear in either Firefox or Google Chrome. The Elements tab (see Figure
11-1) displays the live content, even if JavaScript has been adding and
removing elements, so you can see which elements are contained within
which others. The Network tab (see Figure 11-2) allows you to hit Reload
and examine all of the HTTP requests and answers, including those initiated
by JavaScript, that have resulted in a complete page. And the Console
shows you any faults that the page is having, even if they aren’t being
notified to you as a user.
There are two types of automation that programmers deal with.
The first is when you’re casting a wide net because you want to download a
large amount of info. Apart from the possibility of an initial login step to
obtain the cookies you require, this type of work typically entails multiple
GET operations, which may in turn fuel other GETs as you read links from
the pages you are downloading. This is the same pattern followed by the
“spider” programmes used by web search engines to learn about the pages
on each website. The term “spider” was coined for these applications in the
days when “web” conjured up images of spider webs.
The other flavour is when you only want to do a precise and targeted action
on one or two pages rather than a large section of a website. This could be
because you only need data from a specific page—for example, you might
want your shell prompt to print the temperature from a specific weather
page—or because you’re trying to automate a task that would normally
require a browser, such as paying a customer or listing yesterday’s credit
card transactions to check for fraud. This frequently necessitates
significantly greater vigilance when it comes to clicks, forms, and
verification.
Because the bank employs in-page JavaScript to discourage automated
attempts to gain illegal access to accounts, it frequently requires a full-
fledged browser to run the show rather than just Python.
Before launching an automated programme against a website, make sure to
examine the terms of service and the robots.txt files. Expect to be stopped if
your program’s behaviour becomes noticeably more demanding than a
regular human user browsing through the page that they are stopping to
scan or read—even if it gets stuck in edge circumstances that you didn’t
predict. I’m not even going to mention OAuth and other tricks that make it
much more difficult for programmers to execute programmes that do tasks

that would otherwise require the use of a browser. When unfamiliar tactics
or protocols appear to be involved, get as much assistance from third-party
libraries as possible, and closely monitor your outgoing headers to ensure
that they match exactly what you see emitted when you successfully submit
a form or view a website with your browser. Depending on how opinionated
the site is, even the user-agent field can be important!

Obtaining Pages
There are three methods for retrieving pages from the Web and examining
their content in a Python programme.

Using a Python library to make direct GET or POST requests. Request
a Session object from the Requests library so it can keep track of
cookies and do connection pooling for you. If you wish to stay within
the Standard Library, urllib.request is a solution for low-complexity
circumstances.
There was once a middle ground of tools that could act enough like a
rudimentary web browser to locate form> components and assist you
in building an HTTP request using the same rules that a browser
would use to return form inputs to the server. Mechanize was the most
well-known, but I can’t find any evidence that it’s still active—
possibly because so many websites are now so complex that
JavaScript is almost a must for exploring the modern Web.
A actual web browser can be used. In the examples that follow, you’ll
use the Selenium Webdriver library to handle Firefox, although there
are also ongoing studies with “headless” tools that operate like
browsers without needing to open a full window. They usually do this
by generating a WebKit instance that isn’t linked to a real window.
PhantomJS popularised this approach in the JavaScript world, and
Ghost.py is a current Python experiment with the functionality.

Your algorithm can be pretty straightforward if you already know which
URLs you want to visit. Take the list of URLs, send each one an HTTP
request, then save or analyse the results. Only if you don’t know the list of
URLs ahead of time and have to learn them as you go will things become
hard. You’ll have to keep track of where you’ve been so you don’t visit the
same URL twice and end yourself in a loop.

Listing 11-12 depicts a simple scraper with a narrow scope. Its purpose is to
log into a payment application and report on the user’s earnings. Make a
copy of the payment application in one window before running it.
$ python app_improved.py

Listing 11-12. Using the Payments System and Adding Up Earnings
#!/usr/bin/env python3

Programming in Python: The Basics

Manual scraping, that navigates to a particular page and

grabs data.

import argparse, bs4, lxml.html, requests

from selenium import webdriver

from urllib.parse import urljoin

ROW = ‘{:>12} {}’

def download_page_with_requests(base):

session = requests.Session()

response = session.post(urljoin(base, ‘/login’),

{‘username’: ‘john’, ‘password’: ‘12345678’})

assert response.url == urljoin(base, ‘/’)

return response.text

def download_page_with_selenium(base):

browser = webdriver.Firefox()

browser.get(base)

assert browser.current_url == urljoin(base, ‘/login’)

css = browser.find_element_by_css_selector

css(‘input[name=”username”]’).send_keys(‘john’)

css(‘input[name=”password”]’).send_keys(‘12345678’)

css(‘input[name=”password”]’).submit()

assert browser.current_url == urljoin(base, ‘/’)

return browser.page_source

def scrape_with_soup(text):

soup = bs4.BeautifulSoup(text)

total = 0

for li in soup.find_all(‘li’, ‘to’):

dollars = int(li.get_text().split()[0].lstrip(‘$’))

memo = li.find(‘i’).get_text()

total += dollars

print(ROW.format(dollars, memo))

print(ROW.format(‘-’ * 8, ‘-’ * 30))

print(ROW.format(total, ‘Total payments made’))

def scrape_with_lxml(text):

root = lxml.html.document_fromstring(text)

total = 0

for li in root.cssselect(‘li.to’):

dollars = int(li.text_content().split()[0].lstrip(‘$’))

memo = li.cssselect(‘i’)[0].text_content()

total += dollars

print(ROW.format(dollars, memo))

print(ROW.format(‘-’ * 8, ‘-’ * 30))

print(ROW.format(total, ‘Total payments made’))

def main():

parser = argparse.ArgumentParser(description=’Scrape our

payments site.’)

parser.add_argument(‘url’, help=’the URL at which to begin’)

parser.add_argument(‘-l’, action=’store_true’, help=’scrape

using lxml’)

parser.add_argument(‘-s’, action=’store_true’, help=’get with

selenium’)

args = parser.parse_args()

if args.s:

text = download_page_with_selenium(args.url)

else:

text = download_page_with_requests(args.url)

if args.l:

scrape_with_lxml(text)

else:

scrape_with_soup(text)

if __name__ == ‘__main__’:

main()

You’re ready to start mscrape.py in another terminal window once this
Flask application is started on port 5000. If you don’t already have it,
download and install the Beautiful Soup third-party library, as well as
Requests.
$ pip install beautifulsoup4

$ pip install requests

$ python mscrape.py http://127.0.0.1:5000/

125 Registration for PyCon

200 Payment for writing that code

-------- ------------------------------

325 Total payments made

When mscrape.py is run in its default mode, it first utilises the Requests
library to log in to the site via the login form. This is what will give the
Session object the cookie it requires to successfully fetch the home page.
The script then parses the page, gets the list-item items designated with the
class to, and uses a few print() calls to tally up the outgoing payments.
By passing the -s option to mscrape.py, you can have it do something a little
more exciting: it will launch a full version of Firefox if it is found on your
system, and use it to browse the website instead! This mode will only work
if you have the Selenium package installed.
$ pip install selenium
$ python mscrape.py -s http://127.0.0.1:5000/
125 Registration for PyCon
200 Payment for writing that code
------- ------------------------------
325 Total payments made

Once the script has displayed its output, press Ctrl+W to close Firefox.
While Selenium scripts may be written to automatically dismiss Firefox, I
prefer to leave it open when developing and debugging so that I can see
what went wrong in the browser if the programme encounters an error.
The distinction between these two techniques should be emphasised. To
develop the Requests-based code, you must first visit the site, read the login
form, and copy the information into the data that the post() method uses to
log in. Once you’ve done that, your code will have no means of knowing
whether or not the login form will change in the future. Whether or not the
hard-coded input names ‘username’ and ‘password’ are still relevant, it will
just utilise them.
So, at least when built this manner, the Requests technique is nothing like a
browser. There is no purpose in going to the login page and seeing a form.
It’s more like thinking the login page exists and then executing a U-turn to
POST the form that’s the ultimate result. Obviously, if the login form is

ever given a secret token to prevent mass efforts to guess user passwords,
this strategy will fail. In that instance, a first GET of the /login page would
be required to obtain the secret token, which would then need to be coupled
with your username and password to create a valid POST.
In mscape.py, the Selenium-based code takes the opposite technique. It acts
as though it just sees a form, picks its elements, and begins typing, just like
a user sitting at a browser. Then it reaches over and presses the form’s
submit button. Selenium is simply doing in Firefox what you would do to
log on, thus as long as its CSS selectors continue to correctly identify the
form fields, the code will succeed in logging in regardless of any secret
tokens or special JavaScript code to sign or automate the form post.
Of course, Selenium is significantly slower than Requests, especially when
you initially start it and have to wait for Firefox to load. However, it can
quickly do things that might usually require hours of trial and error in
Python. A hybrid approach to a complex scraping job would be interesting:
could you use Selenium to log in and get the appropriate cookies, then
notify Requests about them so that your mass fetch of further pages doesn’t
have to wait on the browser?

Pages for Scraping
When a site sends data in CSV, JSON, or another recognised data format,
you’ll use the Standard Library’s appropriate module or a third-party library
to parse it so you can process it. But what if the information you require is
hidden in HTML that is visible to the user?
Reading raw HTML in Google Chrome or Firefox after clicking Ctrl+U
might be tedious, depending on how the site has chosen to format it. It’s
often more enjoyable to right-click, pick Inspect Element, and then merrily
browse the browser’s collapsible document tree of elements—assuming the
HTML is properly written and that a mistake in the markup hasn’t
concealed the data you need from the browser! As you’ve seen, the problem
with the live element inspector is that by the time you see the document,
any JavaScript programmes running on the page may have already altered it
beyond recognition.
There are at least two simple techniques for examining such pages. The first
step is to disable JavaScript in your browser and reload the page you’re on.

It should now appear in the element inspector without any changes: you
should be able to view exactly what your Python code would see when
downloading the identical page. The other method is to use a “tidy” tool,
such as the W3C’s tidy programme, which is available as the tidy package
on Debian and Ubuntu. It turns out that such functions are incorporated into
both of the parsing libraries used in Listing 11-12. Once the soup object is
created, you can use the following technique to display its elements on the
screen:
print(soup.prettify())
Displaying a lxml document tree takes a little more effort.
from lxml import etree
print(etree.tostring(root, pretty_print=True).decode(‘ascii’))

If the site sending it is not putting items on separate lines and indenting
them to make their document structure evident, the outcome is likely to be
significantly easier to read than raw HTML—steps that, of course, might be
difficult and would raise the bandwidth needs of any site serving HTML.
The following three steps are involved in examining HTML:

1. Request that your chosen library parse the HTML. Because much
HTML on the Internet has errors and broken markup, this might be
problematic for the library. Designers, on the other hand, are generally
unaware of this because browsers are constantly attempting to recover
and understand the markup. After instance, why would any browser
maker want their browser to be the only one that returns an error for a
popular website when all other browsers display it correctly? Both of
the libraries in Listing 11-12 are known for being dependable HTML
parsers.

2. Use selectors, which are word patterns that will automatically discover
the elements you desire, to delve further into the page. While you
could do the dive yourself by patiently iterating over each element’s
descendants and looking for the tags and attributes that interest you,
selectors are often faster. They also usually result in clearer, easier-to-
read Python code.

3. Request the text and attribute values you require from each element
object. In Listing 11-12, the three-stage method is repeated twice using
two different libraries.

In Listing 11-12, the three-stage method is repeated twice using two
different libraries.
The BeautifulSoup library is used by the scrape with soup() function, which
is a go-to resource for programmers all over the world. Its API is quirky and
one-of-a-kind because it was the first Python library to make document
parsing so simple, but it gets the job done.
All “soup” objects have a find all() method that searches for subordinate
elements that match a given tag name and, optionally, an HTML class
name, whether the object represents the entire document or a subordinate
object that represents a single element. When you’ve finally found the
bottom element you’re looking for and are ready to read its content, you can
use the get text() method. The code can scrape data from this simple online
site using only these two ways, and even complex web sites may often be
scraped using only a half-dozen or a dozen different processes.
The documentation for BeautifulSoup can be found at
www.crummy.com/software/BeautifulSoup/.
Instead, the scrape with lxml() function makes use of the lxml library,
which is built on top of libxml2 and libxslt. If you’re using an older
operating system that doesn’t come with compilers—or if you haven’t
installed the python-dev or python-devel package, your operating system
might not be able to support compiled Python packages. The library is
already compiled against the system Python as a package on Debian-
derived operating systems, and is commonly referred to as python-lxml.
Even on Mac OS X and Windows, a contemporary Python distribution like
Anaconda will have lxml already constructed and ready to install:
http://continuum.io/downloads.
Listing 11-12 can alternatively utilise the library to parse the HTML if you
can get it installed.
$ pip install lxml
$ python mscrape.py -l http://127.0.0.1:5000/
125 Registration for PyCon
200 Payment for writing that code
-------- ------------------------------
325 Total payments made

http://www.crummy.com/software/BeautifulSoup/

The essential stages are the same as they were with BeautifulSoup. You
begin at the top of the document, use the find or search method—in this
example, cssselect()—to zero in on the elements that interest you, and then
use additional searches to grab subordinate elements or, finally, to ask
elements for the text they contain so that you can parse and display it.
Not only is lxml faster than BeautifulSoup, but it also gives you more
possibilities for selecting items.

It uses cssselect to support CSS patterns(). This is especially
significant when searching for elements by class, because an element
is deemed to be in class x regardless of whether its class attribute is
specified as class=”x,” class=”x y,” or class=”w y”.
Its xpath() method, which is popular among XML fans, supports
XPath expressions. To find all paragraphs, for example, they appear
like ‘./p’. One of the more enjoyable aspects of an XPath expression is
that you can conclude it with ‘.../text()’ and just obtain the text inside
each element, rather than Python objects from which you must then
request the text.
Its find() and findall() methods provide a quick subset of XPath
operations natively.

The scraper had to work a little harder in both of these examples because
the payment description field is its own I element, but the dollar amount at
the start of each line was not placed inside its own element by the site
designer. This is a common dilemma; some things you want from a website
will be in an element by themselves, while others will be smack dab in the
centre of other content, requiring you to utilise classic Python string
techniques like split() and strip() to extract them from their context.

Recursive Scraping
This book’s source code repository includes a small static web site that
makes it difficult for a web scraper to access all of its pages. It’s available at
https://bpbonline.com/ Programming in Python: The Basics
If you have the source code repository checked out, you can serve it locally
using Python’s built-in web server.
$ python -m http.server

https://bpbonline.com/

Serving HTTP on 0.0.0.0 port 8000 ...

You can observe that not all of the links on the front page at
http://127.0.0.1:8000/ are delivered at the same time if you read the page
code and then look around using your browser’s web debugging
capabilities. Only two of these (“page1” and “page2”) are true anchor tags
with href=”” attributes in the page’s raw HTML.
The next two pages are hidden behind a form with a Search submit button,
and you won’t be able to access them unless you click the button. A small
chunk of dynamic JavaScript code results in the two last links (“page5” and
“page6”) appearing at the bottom of the screen. This mimics the behaviour
of websites that immediately show you the skeleton of a page but then make
another round-trip to the server before displaying the data you’re looking
for.
You might want to look for a web-scraping engine that can help you execute
a full-fledged recursive search of all of the URLs on a web site, or even just
a portion of it, at this stage. In the same way as web frameworks take into
account typical patterns in web applications, such as the necessity to return
404 for nonexistent sites, web frameworks take into account common
patterns in web applications. Scraping frameworks are adept at keeping
track of which pages have been visited and which have yet to be visited.
Scrapy (http://scrapy.org/) is the most popular web scraper at the present,
and its documentation can be studied if you wish to try expressing a
scraping operation in a way that fits into its model.
Look behind the scenes in Listing 11-13 to see what a real—if simple—
scraper looks like below. This one requires lxml, so if you can, install that
third-party library using the instructions in the preceding section.

Listing 11-13. A Recursive Web Scraper That GETS
#!/usr/bin/env python3
Programming in Python: The Basics
Recursive scraper built using the Requests library.
import argparse, requests
from urllib.parse import urljoin, urlsplit
from lxml import etree
def GET(url):

response = requests.get(url)

http://scrapy.org/

if response.headers.get(‘Content-Type’, ‘’).split(‘;’)[0] !=
‘text/html’:
return

text = response.text
try:
html = etree.HTML(text)

except Exception as e:
print(‘ {}: {}’.format(e.__class__.__name__, e))
return

links = html.findall(‘.//a[@href]’)
for link in links:
yield GET, urljoin(url, link.attrib[‘href’])

def scrape(start, url_filter):
further_work = {start}
already_seen = {start}
while further_work:
call_tuple = further_work.pop()
function, url, *etc = call_tuple
print(function.__name__, url, *etc)
for call_tuple in function(url, *etc):

if call_tuple in already_seen:
continue

already_seen.add(call_tuple)
function, url, *etc = call_tuple
if not url_filter(url):
continue
further_work.add(call_tuple)

def main(GET):
parser = argparse.ArgumentParser(description=’Scrape a
simple site.’)
parser.add_argument(‘url’, help=’the URL at which to begin’)
start_url = parser.parse_args().url
starting_netloc = urlsplit(start_url).netloc
url_filter = (lambda url: urlsplit(url).netloc ==
starting_netloc)
scrape((GET, start_url), url_filter)

if __name__ == ‘__main__’:

main(GET)

There are only two moving elements in Listing 11-13, aside from the duty
of setting it up and reading its command-line arguments.
The simplest is its GET() function, which tries to download a URL and
parse it if it’s HTML; only if those steps succeed does it retrieve the href=””
attributes of all the anchor tags () to figure out what other pages the current
page links to. Because any of these links could be relative URLs, it uses
urljoin() on each of them to provide any missing base components.
The GET() function returns a tuple for each URL found in the text of the
page, indicating that it wants the scraping engine to call itself on the URL it
found, unless the engine knows it has already done so. The engine only
needs to keep track of which combinations of functions and URLs it has
already called, so that a URL that occurs on the website multiple times is
only accessed once. It stores a collection of URLs it’s seen before and
another set of URLs it hasn’t seen yet, repeating until the latter set is empty.
This scraper may be used to scrape a large public web site such as httpbin.
$ python rscrape1.py http://httpbin.org/

Listing 11-12 can alternatively utilise the library to parse the HTML if you
can get it installed.
$ python rscrape1.py http://127.0.0.1:8000/
GET http://127.0.0.1:8000/
GET http://127.0.0.1:8000/page1.html

GET http://127.0.0.1:8000/page2.html

If the scraper is to look further, it will require two elements.
To begin, open the HTML in a real browser so that the JavaScript can run
and the remainder of the page can be loaded.
Second, in addition to GET(), you’ll need a second operation that takes a
big breath and presses the Search button to see what’s behind it.
This is the type of operation that should never, ever be included in an
automated scraper designed to pull generic content from a public web site,
because, as you’ve already learned, form submission is specifically
designed for user actions, especially when accompanied by a POST
operation. (In this case, the form performs a GET, making it a little safer.)

In this situation, though, you have examined this small website and
determined that clicking the button is safe.
Because the engine was not firmly connected to any particular idea of what
functions it should call, Listing 11-14 can simply reuse the engine from the
previous scraper. Any functions that are provided to it will be referred to as
work.

Listing 11-14. Selenium is used to scrape a website in a recursive manner.
#!/usr/bin/env python3
Programming in Python: The Basics
Recursive scraper built using the Selenium Webdriver.
from urllib.parse import urljoin
from rscrape1 import main
from selenium import webdriver
class WebdriverVisitor:

def __init__(self):
self.browser = webdriver.Firefox()

def GET(self, url):
self.browser.get(url)
yield from self.parse()
if self.browser.find_elements_by_xpath(‘.//form’):

yield self.submit_form, url
def parse(self):
(Could also parse page.source with lxml yourself, as in
scraper1.py)
url = self.browser.current_url
links = self.browser.find_elements_by_xpath(‘.//a[@href]’)
for link in links:
yield self.GET, urljoin(url, link.get_attribute(‘href’))

def submit_form(self, url):
self.browser.get(url)
self.browser.find_element_by_xpath(‘.//form’).submit()
yield from self.parse()

if __name__ == ‘__main__’:
main(WebdriverVisitor().GET)

You shouldn’t use the Firefox() function every time you need to fetch a
URL because Selenium instances are expensive to construct (they have to

start up a copy of Firefox, after all). Instead of a simple function, the GET()
procedure is written as a method here so that the browser property can
survive from one GET() call to the next and be available when it’s time to
run submit form ().
This listing deviates significantly from the previous one in the submit
form() method. When the GET() method encounters the search form on the
page, it returns an extra tuple to the engine. It will return a tuple for every
link it finds on a page, as well as a tuple that will load the page and click the
huge Search button. This is what allows this scraper to dig deeper into this
site than the one before it.
$ python rscrape2.py http://127.0.0.1:8000/
GET http://127.0.0.1:8000/
GET http://127.0.0.1:8000/page1.html
GET http://127.0.0.1:8000/page2.html
submit_form http://127.0.0.1:8000/
GET http://127.0.0.1:8000/page5.html
GET http://127.0.0.1:8000/page6.html
GET http://127.0.0.1:8000/page4.html

GET http://127.0.0.1:8000/page3.html

Despite the fact that some links are loaded dynamically via JavaScript and
others can only be visited via a form post, the scraper is able to find every
single page on the site. You should be able to automate your interactions
with any website using Python thanks to strong approaches like these.

Conclusion
HTTP was created to offer the World Wide Web: a collection of documents
linked together by hyperlinks that each name the URL of a different page,
or piece of a page, that may be accessed by merely clicking the hyperlink’s
text. The Python Standard Library includes functions for reading and
constructing URLs, as well as converting partial “relative URLs” into
absolute URLs by filling in any missing components with data from the
page’s base URL.
In most web applications, a persistent data store, such as a database, is
linked to code that answers to incoming HTTP requests and generates
HTML pages in response. When you try to insert untrusted information

from the Web, it’s critical to let the database handle its own quoting, and
both the DB-API 2.0 and any ORM you could use in Python will take care
to do so correctly.
Simple to full stack web frameworks are available. You can choose your
own template language and ORM (or other persistence layer) with a basic
framework. Instead, a full-stack framework will provide its own
implementations of these utilities. In either scenario, there will be a way to
connect URLs to your own code that supports both static URLs and URLs
with variable path components, such as /person/123/. There will also be
quick ways to render and return templates, as well as return redirects or
HTTP errors.
The great threat that every site author faces is that the numerous ways in
which components interact in a complex system like the Web might allow
users to sabotage your own or each other’s aims. At the interface between
the outside world and your own code, keep in mind the risk of cross-site
scripting attacks, cross-site request forgery, and attacks on your users’
privacy. Before you build any code that accepts data via a URL route, a
URL query string, or a POST or file upload, you should be aware of these
risks. The choice between a full-stack solution like Django, which
encourages you to stay within its tool set but tends to choose good defaults
for you (such as having CSRF protection turned on automatically in your
forms), and a solution like Flash or Bottle, which feels sleeker and lighter
and lets you assemble your own solution but requires you to know all of the
pieces up front, is often the trade-off between frameworks. You will go
without CSRF protection if you develop an app in Flask without realising
you need it.
Tornado is notable for its async architecture, which allows several clients to
be served from a single operating-system-level control thread. Approaches
like Tornado might be expected to develop toward a common set of idioms,
similar to those provided by WSGI for threaded web frameworks today,
with the introduction of asyncio in Python 3.
Turning around and scraping a web page necessitates a deep understanding
of how web sites work in order to script what would typically be user
behaviours, such as logging on or filling out and submitting a form. In
Python, there are several techniques for both requesting and processing
pages. At present time, Requests or Selenium for fetching and

BeautifulSoup or lxml for parsing are the most popular options. This book
wraps off its examination of HTTP and the World Wide Web with a look at
web application writing and scraping. The subject of e-mail messages and
how they are formatted is the focus of the next chapter, which takes you on
a tour of various lesser-known protocols supported by the Python Standard
Library.

CHAPTER 12
E-mail Construction And Parsing

This is the first of four chapters on the crucial subject of electronic mail.
The topic of network communication is not covered in this chapter. Rather,
it sets the tone for the following three:

This chapter explains how e-mail messages are constructed, with a
focus on proper multimedia inclusion and internationalisation. The
payload format for the protocols described in the following three
chapters is established by this.
In Chapter 13, you’ll learn about the Simple Mail Transport Protocol
(SMTP), which is used to transport e-mail messages from the machine
where they’re written to the server where they’ll be read by a specific
recipient.
Chapter 14 discusses the outdated, inefficient Post Office Protocol
(POP), which allows someone who is ready to check their e-mail to
download and view fresh messages sitting in their in box on their e-
mail server.
In Chapter 15, you’ll learn about the Internet Message Access
Protocol (IMAP), which is a more advanced version of the SMTP
protocol. A current solution for accessing e-mail that is hosted on your
e-mail server locally. IMAP not only allows you to fetch and view
messages, but it also allows you to mark them as read. Then save them
to various directories on the server.

As you can see, the four chapters are arranged in a way that represents an e-
natural ma’s lifecycle. An e-mail, for starters, is made up of varied text,
multimedia, and metadata, such as the sender and recipient. Then SMTP
transports it from the source to the target server. Finally, the recipient’s e-
mail client—most often Mozilla Thunderbird or Microsoft Outlook—uses a
protocol like POP or IMAP to download a copy of the message to their
desktop, laptop, or tablet for viewing. However, be aware that this last step

is becoming less common: many people nowadays read their e-mail through
webmail services, which allow them to log on with a web browser and view
their e-mails rendered as HTML without ever leaving the e-mail server.

Structure:
Format of an Email Message
Putting Together an E-Mail Message
HTML and Multimedia Enhancement
Content Creation
E-mail Message Parsing
MIME Parts on the Move
Encodings for Headers
Dates Parsing
Conclusion

Objectives:
Hotmail was formerly quite popular, but Gmail is now the largest service of
its kind. Remember that regardless of how an e-mail is formed and
represented later—whether you use SMTP, POP, or IMAP—the rules for
how an e-mail is formatted and represented are the same. This chapter is all
about those rules.

Format of an Email Message
The famous RFC 822 of 1982 served as the definition of e-mail for nearly
20 years, until it was finally out of date. RFC 2822 supplied this upgrade in
2001, however it was replaced in 2008 by the publication of RFC 5322.
When writing particularly important or high-profile code for dealing with e-
mail messages, you’ll want to refer to these guidelines. Only a few facts
concerning e-mail formatting require urgent consideration for the purposes
of this article.

Plain ASCII text (character codes 1 through 127) is used to represent
e-mail.

The carriage-return-plus-linefeed (CRLF) two-character sequence,
which is the same pair of codes used to advance to the next line on an
old teletype machine and is still the standard line-ending sequence in
Internet protocols today, is the end-of-line marker.
Headers, a blank line, and then the body make up an e-mail.
Each header is formatted with a case-insensitive name, a colon, and a
value, which can span multiple lines if the header’s second and
following lines are indented with whitespace.
Because plain text does not support Unicode characters or binary
payloads, other standards, which I will discuss later in this chapter,
provide encodings that allow richer data to be blended down to simple
ASCII text for transmission and storage.

Listing 12-1 contains a genuine e-mail message that came in my inbox.

Listing 12-1. After the delivery is complete, a real-world e-mail message is
sent.
X-From-Line: rms@gnu.org Fri Dec 3 04:00:59 1999
Return-Path: <rms@gnu.org>
Delivered-To: john@yahoo.com
Received: from Esther.edu (pele.santafe.edu [192.12.12.119])
by europa.gtri.gatech.edu (Postfix) with ESMTP id 6C4774809
for <john@yahoo.com>; Fri, 8 nov 2019 04:00:58 -0500 (EST)

Received: from Esther.edu (Esther [192.12.12.49])
byEsther.edu (8.9.1/8.9.1) with ESMTP id CAA27250
for <john@yahoo.com>; Fri, 8 nov 2019 02:00:57 -0700 (MST)

Received: (from rms@localhost)
by Esther.edu (8.9.1b+Sun/8.9.1) id CAA29939;
Fri, 8 nov 2019 02:00:56 -0700 (MST)

Date: Fri, 8 nov 2019 02:00:56 -0700 (MST)
Message-Id: <201911080900.CAA29939@Esther.edu>
X-Authentication-Warning: Esther.edu: rms set sender to
rms@gnu.org using -f
From: stanley david <rms@gnu.org>
To: john@yahoo.com
In-reply-to: <m3k8my7x1k.fsf@europa.gtri.gatech.edu> (message
from John

chris rodrigues on 07 nov 2019 00:04:55 -0500)
Subject: Re: Please proofread this license
Reply-To: rms@gnu.org
References: <201911070547.WAA21685@aztec.santafe.edu>
<m3k8my7x1k.fsf@europa.gtri.gatech.edu>
Xref: 38-74.clients.speedfactory.net scrapbook:11
Lines: 1
Thanks.

Despite the fact that only one line of text body was transmitted with this
message, you can see that it acquired quite a bit of additional data during its
Internet transfer.
Although all of the headers from the From line down were likely present
when the e-mail was written, many of the headers above it were most likely
added at various points along its transmission history. Each client and
server that processes an e-mail message retains the right to add extra
headers. This implies that as an e-mail message travels through the network,
it accumulates a personal history, which can usually be read by starting with
the last headers and moving upward until you reach the first. In this
example, the e-mail appears to have originated on a machine called aztec in
Santa Fe, where the author was connected directly across the local host
internal interface. The message was subsequently forwarded to pele by the
aztec machine, which most likely handled e-mail transmission for a
department or the entire campus via SMTP. Finally, pele established an
SMTP connection to my Georgia Tech europa machine, which saved the
message to disc so that I could access it later.
At this point, I’ll take a moment to present a few specific e-mail headers; a
complete list can be found in the standards.

From the e-mail message’s author’s name. The headers that follow are
similar to the ones that come before them. Inside angle brackets, it
accepts both the person’s real name and their e-mail address.
If the author named in the From header is not the intended recipient,
reply-to specifies where replies should be sent.
A list of one or more principal recipients is called a to-do list.
Cc is a list of one or more recipients who should receive “copy
copies” of the email but aren’t explicitly addressed by it.

Bcc is a list of people who should receive hidden carbon copies of an
e-mail without the rest of the recipients knowing. As a result, careful
e-mail clients remove Bcc before actually sending an e-mail.
The message author’s subject is a human-readable summary of the
message’s contents.
The date indicates whether or not the communication was sent or
received. If a date is included in the sender’s e-mail client, the
receiving e-mail server and reader will not overwrite it. If the sender
does not mention a date, it may be added after the e-mail is received
for completeness.
Message-Id is a one-of-a-kind string that identifies the e-mail.
The Message-Ids of the preceding messages to which this message is a
reply are listed in the In-Reply-To field. If you’re requested to create a
threaded display that displays reply messages beneath the e-mails to
which they’re replies, these can come in handy.
Each time the e-mail arrives at another “hop” on its route across the
Internet via SMTP, it is added to the Received list. E-mail server
managers frequently examine these tree rings to discover why a
message was sent correctly or incorrectly.

In a basic example like this, the plain-text limitation on e-mail has
ramifications for both the headers and the body: both are limited to being
ASCII. I’ll describe both the standards that regulate how a header can
include international characters and the standards that dictate how the e-
mail body can include international or binary data in the parts that follow.

Putting Together an E-Mail Message
The EmailMessage class, which will be used in every programme listing in
this chapter, is Python’s primary interface for creating e-mail messages. It’s
the result of R. David Murray, the Python email module specialist, who I’d
like to thank for his help and advise when I was putting together the scripts
in this chapter. Listing 12-2 shows the most basic example.

Listing 12-2. Making a Basic Text E-Mail Message
#!/usr/bin/env python3
Programming in Python: The Basics

import email.message, email.policy, email.utils, sys
text = “””Hello,
This is a basic message from Chapter 12.
- Anonymous”””

def main():
message = email.message.EmailMessage(email.policy.SMTP)
message[‘To’] = ‘recipient@example.com’
message[‘From’] = ‘Test Sender <sender@example.com>’
message[‘Subject’] = ‘Test Message, Chapter 12’
message[‘Date’] = email.utils.formatdate(localtime=True)
message[‘Message-ID’] = email.utils.make_msgid()
message.set_content(text)
sys.stdout.buffer.write(message.as_bytes())

if __name__ == ‘__main__’:
main()

This chapter’s code is only for Python 3.4 and later, which is the version of
Python that added the EmailMessage class to the old e-mail module. Study
the older scripts at https://bpbonline/Programming in Python: The
Basics/chapter 12 if you need to target older versions of Python 3 and can’t
upgrade.
You can make e-mail messages even simpler by eliminating the headers
listed above, but this is the very minimum that you should consider on the
modern Internet.
The EmailMessage API allows your code to closely match the text of your
e-mail message. Although you are allowed to set headers and supply
content in any sequence that makes the most sense for your code, setting the
headers first and then the body last creates a beautiful symmetry in the way
the message appears on the wire and in an e-mail client.
It’s worth noting that I’ve included two headers here that you should always
include, but whose values will not be automatically set for you. I’m using
the formatdate() method, which is already included in Python’s standard set
of e-mail utilities, to provide the Date in the particular format required by e-
mail standards. The Message-Id is likewise carefully built from random
information in order to make it (ideally) distinct from every other e-mail
messages that have ever been written or will ever be written.

https://bpbonline/Programming

The completed script just prints the e-mail on its standard output, making it
simple to experiment with and seeing the results of any changes you make
right away.
To: recipient@example.com
From: Test Sender <sender@example.com>
Subject: Test Message, Chapter 12
Date: Fri, 28 Feb 2019 16:54:17 -0400
Message-ID: <20140328459417.5927.96806@desktop>
Content-Type: text/plain; charset=”utf-8”
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0
Hello,
This is a basic message from Chapter 12.

You’d notice that several of these headers are missing if you built an email
message with the old Message class instead of EmailMessage. Rather than
providing a transfer encoding, MIME version, or content type, old-
fashioned e-mail messages, such as the one in Listing 12-1, simply omit
these headers and trust that e-mail clients will use the customary defaults.
However, in order to provide the best level of interoperability with newer
tools, the modern EmailMessage function Object() { [native code] } is more
careful to declare specific values.
As previously indicated, header names are case insensitive. As a result,
conforming e-mail clients will not distinguish between the meaning of
Message-Id in Listing 12-1 and the generated e-Message-ID mail’s (with a
capital D instead). If you don’t want the formatdate() function to use the
current date and time, you may give it a specified Python datetime to show,
and you can even have it use Greenwich Mean Time (GMT) instead of the
local time zone. Details can be found in Python’s documentation.
Be aware that the unique Message-ID is built from several pieces of
information that you might not want to reveal if you’re in a high-security
situation: the exact time and date and millisecond of your call to make
msgid(), the process ID of this Python script invocation, and even your
current hostname if you don’t provide an alternative with the optional
domain= keyword. If you don’t want to reveal any of this information,
choose a different unique-id solution (possibly one based on an industrial-
strength globally unique identifier [UUID] technique).

Finally, even though the text isn’t technically email-compatible (the triple-
quoted string constant lacks a terminal line ending to conserve vertical
space in the script), the combination of set content() and as bytes()
guaranteed that the e-mail message was appropriately terminated with a
newline.

HTML and Multimedia Enhancement
In the early days of e-mail, many ad-hoc systems were devised to transport
binary data across the 7-bit ASCII world, but it was the MIME standard that
established an interoperable and expandable mechanism for non-ASCII
payloads.
When an e-mail comes on a line with two hyphens in front of it, MIME
permits the Content-Type e-mail header to specify a boundary string that
breaks the e-mail into smaller message sections. Each portion can have its
own headers, as well as content types and encodings. If a component
specifies its own boundary string, it can be subdivided into even more
subparts, resulting in a hierarchy. The Python email module has low-level
support for constructing MIME messages from whichever parts and
subparts you choose. Simply create a number of email.messages. Attach()
MIMEPart objects to their parent part or message, giving each one headers
and a body using the same interface as an EmailMessage:
my message.attach(part1)
my message.attach(part2)
...

Manual assembly should only be used if you are attempting to replicate a
specific message structure that is required by your application or project
specifications. In most cases, you may just create an EmailMessage (as
shown in Listing 12-2) and call the four methods listed below in order to
produce your result:

To install the primary message body, set content() should be called
first.
add related() can then be called a number of times to augment the
primary content with other resources to render. When your main
content is HTML and you need photos, CSS style sheets, and
JavaScript files to render appropriately on an e-mail client that

supports rich content, you’ll most likely utilise this. Each connected
resource should have a Content-Id (cid) that can be used in hyperlinks
in the main HTML content.
add alternative() can then be called a number of times to provide
alternative renderings of your email message. You might give a plain-
text alternate rendering for less capable e-mail clients if the body
includes HTML, for example.
add attachment() can be called a number of times to provide any
attachments that should be sent with the message, such as PDF
documents, photos, or spreadsheets. Each attachment has a default file
name that is used if the recipient requests that their e-mail client save
the attachment.

Looking back, you can see that Listing 12-2 followed the technique step by
step—it first used set content(), then chose to call each of the other three
methods zero times. The outcome was the most basic e-mail structure
available, with a single body and no subparts. But what happens when
things get more complicated with e-mail? Listing 12-3 is intended to
provide the answer.

Listing 12-3. Using HTML, an Inline Image, and Attachments to Create a
MIME-Powered E-Mail
#!/usr/bin/env python3
Programming in Python: The Basics
import argparse, email.message, email.policy, email.utils,
mimetypes, sys
plain = “””Hello,
This is a MIME message from Chapter 12.
- Anonymous”””
html = “”” <p>Hello</p>,
<p>This is a test message from Chapter 12.</p>
<p>- <i>Anonymous</i></p> “””
img = “”” <p>This is the smallest possible blue GIF:</p>
“””
def main(args):

message = email.message.EmailMessage(email.policy.SMTP)
message[‘To’] = ‘Test Recipient ‘

message[‘From’] = ‘Test Sender ‘
message[‘Subject’] = ‘ Programming in Python: The Basics’
message[‘Date’] = email.utils.formatdate(localtime=True)
message[‘Message-ID’] = email.utils.make_msgid()
if not args.i:
message.set_content(html, subtype=’html’)
message.add_alternative(plain)

else:
cid = email.utils.make_msgid() # RFC 2392: must be globally
unique!
message.set_content(html + img.format(cid.strip(‘<>’)),
subtype=’html’)
message.add_related(blue_dot, ‘image’, ‘gif’, cid=cid,

filename=’blue-dot.gif’)
message.add_alternative(plain)

for filename in args.filename:
mime_type, encoding = mimetypes.guess_type(filename)
if encoding or (mime_type is None):
mime_type = ‘application/octet-stream’

main, sub = mime_type.split(‘/’)
if main == ‘text’:
with open(filename, encoding=’utf-8’) as f:
text = f.read()

message.add_attachment(text, sub, filename=filename)
else:
with open(filename, ‘rb’) as f:
data = f.read()

message.add_attachment(data, main, sub, filename=filename)
sys.stdout.buffer.write(message.as_bytes())

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Build, print a
MIME email’)
parser.add_argument(‘-i’, action=’store_true’, help=’Include
GIF image’)
parser.add_argument(‘filename’, nargs=’*’, help=’Attachment
filename’)
main(parser.parse_args())

The script in Listing 12-3 can be called in four distinct ways. They are, in
sequence of increasing complexity:

build mime email.py (python3)
attachment.txt attachment.gz python3 build mime email.py
build mime email.py -i python3
python3 attachment.txt attachment.gz build mime email.py -i

To save space, I’ll only show the output of the first and last of these four
command lines here; however, if you want to see how the MIME standard
supports gradually increasing levels of complexity depending on the caller’s
needs, you should download build mime email.py and try out the others for
yourself. Despite the fact that the book’s source repository includes two
sample files—attachment.txt (plain text) and attachment.gz (binary)—feel
free to list any attachments on the command line. This will allow you to
observe how the Python email module encodes various binary payloads.
Without any settings or attachments, build mime email.py creates the
simplest MIME structure for giving two alternate versions of an e-mail:
HTML and plain text. The results are displayed below.
To: Test Recipient <recipient@example.com>
From: Test Sender <sender@example.com>
Subject: Programming in Python: The Basics
Date: Tue, 25 feb 2019 17:14:01 -0400
Message-ID: <20140328459417.5927.96806@desktop>
MIME-Version: 1.0
Content-Type: multipart/alternative;
boundary=”===============1625704680==”
--===============1625704680==
Content-Type: text/html; charset=”utf-8”
Content-Transfer-Encoding: 7bit
<p>Hello,</p>
<p>This is a test message from Chapter 12.</p>
<p>- <i>Anonymous</i></p>
--===============1625704680==
Content-Type: text/plain; charset=”utf-8”
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0

Hello,
This is a MIME message from Chapter 12.
- Anonymous
--===============1625704680==--

The above e-mail follows the old standard format at its most basic level:
headers, blank line, and body. The body, on the other hand, is now more
interesting. The headers specify a boundary that splits the body into several
smaller parts in order to carry two payloads, plain text and HTML. Each
section follows the standard format of headers, blank lines, and body. The
contents of a portion are limited to one (quite apparent) restriction: it cannot
contain a copy of either its own boundary line or the boundary line of any
of the enclosing messages. The multipart/alternative content type is one of a
group of multipart/* content types that all adhere to the same set of criteria
for establishing a boundary line and using it to delimit the MIME subparts
beneath it. Its function is to store many versions of a message, each of
which can be displayed to the user and therefore communicate the
message’s entire meaning. The user can read the HTML or plain text in this
situation, but the e-mail will be substantially the same in either case. If they
are able to show HTML, most clients will choose it. Despite the fact that
most e-mail applications would conceal the fact that an option was
presented, Some include a button or drop-down menu that allows the user to
view an alternate version if desired. Although the MIME-Version header is
only given at the top level of the message, the email module has taken care
of this without requiring the sender to be aware of this feature of the
standard.
The following are the rules for multipart sections:

If you call add related() at least once, the body you defined with set
content() is grouped with all related content into a single
multipart/related section.
A multipart/alternative container is formed to retain the original body
together with the alternative part(s) you add if you run add
alternative() at least once.
Finally, if you call add attachment() at least once, a multipart/mixed
outer container is created to hold the content alongside all of the
attachments you add.

Examining the output from the most complicated of the four command lines
given above, you can see all of these mechanisms working together. It asks
for an inline-related image to be included with the HTML, as well as
attachments to be added after the body.
To: Test Recipient
From: Test Sender
Subject: Programming in Python: The Basics
Date: Tue, 25 Feb 2019 17:14:01 -0400
Message-ID: <20140328459417.5927.96806@desktop>
MIME-Version: 1.0
Content-Type: multipart/mixed;
boundary=”===============1086940546==”
--===============1086940546==
Content-Type: multipart/alternative;
boundary=”===============0904170609==”
--===============0904170609==
Content-Type: multipart/related;
boundary=”===============1914784657==”
--===============1914784657==
Content-Type: text/html; charset=”utf-8”
Content-Transfer-Encoding: 7bit
Hello,
This is a test message from Chapter 12.
- Anonymous
This is the smallest possible blue GIF:
--===============1911784657==
Content-Type: image/gif
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=”blue-dot.gif”
Content-ID: <20140325232008.15748.99346@guinness>
MIME-Version: 1.0
R0lGODlhAQABAJAAAAAA/AAACAAAAAQABAAACAQBADs=
--===============1911784657==--
--===============0903270609==
Content-Type: text/plain; charset=”utf-8”
Content-Transfer-Encoding: 7bit
MIME-Version: 1.0

Hello,
This is a MIME message from Chapter 12.
- Anonymous
--===============0903170609==--
--===============0086940546==
Content-Type: text/plain; charset=”utf-8”
Content-Transfer-Encoding: 7bit
Content-Disposition: attachment; filename=”attachment.txt”
MIME-Version: 1.0
This is a test
--===============0086940546==
Content-Type: application/octet-stream
Content-Transfer-Encoding: base64
Content-Disposition: attachment; filename=”attachment.gz”
MIME-Version: 1.0
H4sIAP3o2D8AwvJCxWAKJhZLU4hIuAIPoPAAA
--===============0086940546==--

This email is concentric, with three tiers of multipart material nested within
each other! As you can see, all of the details have been taken care of for us.
Each level has its own non-interfering randomly generated boundary. with
either of the other levels’ boundaries In each case, the appropriate type of
multipart container was picked because of the type of content that it
contains. Finally, the appropriate encodings have been defined. Plain text
has been allowed to travel literally within the body of the e-mail, whereas
binary data-like graphics that are not 7-bit safe have been encoded with
Base64. It’s worth noting that the e-mail object was specifically asked to
render itself as bytes in both of these generating scripts, rather than asking
for text that would have to be encoded before being saved or
communicated.

Content Creation
The calling convention is the same for all four methods used to add material
in Listing 12-3. Consult the Python manual to learn about all of the possible
combinations that are supported in the Python 3 version you’re using. For
the procedures set content(), add related(), add alternative(), and add
attachment(), here are some typical combinations:

type(‘string data of type str’) method(‘string data of type
str’) method(‘string data of type str

method(‘string data of type str’, subtype=’html’) method(‘string data
of type str’, subtype=’html’) method(‘string data of type These result
in segments that have a textual flavour. Unless you specify a specific
subtype, the content type will be text/plain—the second example call,
for example, returns text/html as the content type.
method(b’raw binary payload of type bytes’, type=’image’,
subtype=’jpeg’), type=’image’, subtype=’jpeg’)

If you provide Python raw binary data, it won’t try to guess what type
it should be. You must specify both the MIME type and subtype,
which will be merged in the output with a slash. Note that Listing 12-3
attempts to estimate an acceptable type for each attachment file you
supply on the command line using a mechanism outside the email
module, the mimetypes module.
cte=’quoted-printable’ method(..., cte=’quoted-printable’)

All of these methods appear to use one of two content transfer
encodings by default. Safe 7-bit data is included in e-mails verbatim
using bare and legible ASCII encoding, whereas anything more
harmful is encoded using Base64. If you ever find yourself personally
scrutinising incoming or outgoing e-mails, the latter choice may be
unsuitable—it means, for example, that text parts containing a single
Unicode character will be converted to entirely incomprehensible
Base64 garbage. The cte keyword can be used to override the
encoding setting. The quoted-printable encoding, in particular, may
appeal to you: ASCII letters are kept verbatim in the encoded e-mail,
and escape sequences are employed for any bytes with their eighth bit
set.
cid=’Content ID>’, add related(..., cid=’Content ID>’)

In most cases, you’ll want to give each linked part its own specific
content ID so that your HTML can link to it. Angle brackets should
always wrap the content ID in your call, but they should be eliminated
when forming the cid: link in your HTML. It’s worth noting that
content IDs are designed to be globally unique—every content ID you
use in a document is supposed to be unique among all content IDs

ever used in an e-mail in history! Because the email module does not
provide a dedicated capability for creating unique content IDs, Listing
12-3 uses make msgid().
filename=’data.csv’, add attachment(...)

Most e-mail clients (as well as their users) will demand at least a
recommended file name when adding attachments, though the e-mail
recipient can overrule this default by selecting “Save” if they like.

There are more intricate versions of these calls for unusual scenarios that
you can learn about in the official Python documentation, but these should
get you through the most frequent MIME e-mail problems.

E-mail Message Parsing
Once you’ve processed an email message using one of the functions in the
email module, you can read it in one of two ways. The most straightforward
approach is to presume that the message contains a body and attachments
due to the usual and typical use of MIME, and rely on the convenience
methods included into EmailMessage to assist you locate them.
The more difficult option is to manually go through all of the sections and
subparts of the message and decide what they mean and how they should be
kept or presented. The straightforward approach is shown in Listing 12-4.
It’s necessary to take input as bytes and then provide those bytes to the
email module without trying to decode them yourself, much like when
saving e-mail messages.

Listing 12-4. requesting the body and attachments of an email message
#!/usr/bin/env python3
Programming in Python: The Basics
import argparse, email.policy, sys
def main(binary_file):

policy = email.policy.SMTP
message = email.message_from_binary_file(binary_file,
policy=policy)
for header in [‘From’, ‘To’, ‘Date’, ‘Subject’]:
print(header + ‘:’, message.get(header, ‘(none)’))

print()

try:
body = message.get_body(preferencelist=(‘plain’, ‘html’))

except KeyError:
print(‘<This message lacks a printable text or HTML body>’)

else:
print(body.get_content())

for part in message.walk():
cd = part[‘Content-Disposition’]
is_attachment = cd and cd.split(‘;’)[0].lower() ==
‘attachment’
if not is_attachment:
continue

content = part.get_content()
print(‘* {} attachment named {!r}: {} object of length
{}’.format(
part.get_content_type(), part.get_filename(),
type(content).__name__, len(content)))

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Parse and
print an email’)
parser.add_argument(‘filename’, nargs=’?’, help=’File
containing an email’)
args = parser.parse_args()
if args.filename is None:
main(sys.stdin.buffer)

else:
with open(args.filename, ‘rb’) as f:
main(f)

Once the command-line inputs have been processed and the message has
been read and converted to an EmailMessage, the script automatically
divides into two parts. You can either open the message’s file in binary
mode ‘rb’ or utilise the binary buffer attribute of Python’s standard input
object, which returns raw bytes, to provide the email module access to the
message’s actual binary representation on disc.
The call to the get body() method is the first and most important step, as it
instructs Python to dig further and deeper into the MIME structure of the
message for the component that is best suited to serve as the body. The

formats that you prefer should come first in the preferencelist, followed by
the formats that you are less likely to wish to see. HTML content is
preferred over a plain-text version of the body in this case, but either will
suffice. If an appropriate body cannot be identified, a KeyError is thrown.
It’s worth noting that the default preferencelist, which is used if you don’t
supply one, contains three elements because it prioritises multipart/related
over HTML and plain text. This option is appropriate if you’re creating a
sophisticated e-mail client—for example, a webmail service or an
application with a built-in WebKit pane—that can not only correctly format
HTML but also display inline pictures and support style sheets. The object
you’ll get back is the related-content MIME part itself, which you’ll have to
search through to discover both the HTML and all of the multimedia it
requires. I’ve overlooked this option because the small script here is merely
printing the generated body to the standard output.
After displaying the greatest body available, it’s time to look for any
attachments the user might want to see or download. Note that the example
script requests all of the information required by MIME for an attachment,
including the content type, file name, and data itself. Instead of simply
printing the length and type on the screen, you would presumably open a
file for writing and saving this data in a real programme.
This display script is forced to make its own conclusion about which
message sections are attachments and which are not due to a problem in
Python 3.4. You will be able to replace this manual iteration of the tree and
test every single part’s content disposition with a simple call to your
message’s iter attachments() method in a future version of Python.
The following script will work on any MIME message generated by the
previous scripts, no matter how complex they are. It merely displays the
“interesting” headers and content when given the simplest message.
$ python3 build_basic_email.py > email.txt
$ python3 display_email.py email.txt
From: Test Sender <sender@example.com>
To: recipient@example.com
Date: Tue, 25 Feb 2019 17:14:01 -0400
Subject: Test Message, Chapter 12
Hello,
This is a basic message from Chapter 12.

- Anonymous

Even the most complex message, however, is not too much for it. Before
resurfacing with the HTML version of the e-mail body, the get body() logic
successfully goes into the mixed multipart outer layer, into the alternative
multipart middle, and lastly down into the related multipart innards of the
message. In addition, each of the attachments that were provided is
examined.
$ python3 build_mime_email.py -i attachment.txt attachment.gz
> email.txt
$ python3 display_email.py email.txt
From: Test Sender <sender@example.com>
To: Test Recipient <recipient@example.com>
Date: Tue, 25 Feb 2019 17:14:01 -0400
Subject:
Hello,
This is a MIME message from Chapter 12.
- Anonymous
* image/gif attachment named ‘black-dot.gif’: bytes object of
length 34
* text/plain attachment named ‘attachment.txt’: str object of
length 16
* application/octet-stream attachment named ‘attachment.gz’:
bytes object of length 32

MIME Parts on the Move
If the logic in Listing 12-4 ever proves insufficient for your application—
for example, if it can’t find the body text of an e-mail that your project
needs to parse, or if certain poorly specified attachments are being skipped
to which your customers require access—you’ll have to visit every part of
an e-mail message yourself and implement your own algorithm for which
parts to display, which to save as attachments, and which to truncate—
you’ll have to fall back to
When dismantling a MIME e-mail, there are three key rules to remember.

When analysing a section, the first thing you should do is call the is
multipart() method to see if the MIME part you’re looking at is a

container for other MIME subparts. You can also use get content
type() to get the fully qualified type with a slash between the main
type and subtype, or get content maintype() or get content subtype() if
you only want one half.
When dealing with a multipart, utilise the iter parts() method to loop
through or fetch the parts immediately beneath it, allowing you to
determine which subparts are multiparts and which merely carry
content.
When inspecting a normal part, search for the term attachment
preceding any semicolon in the header’s value to see if it’s intended as
an attachment (look for the word attachment preceding any semicolon
in the header’s value).
Depending on whether the main content type is text or not, the get
content() method decodes and returns the data itself from inside a
MIME part as a text str or a binary bytes object.

To access every portion of a multipart message, the code in Listing 12-5 use
a recursive generator. The generator works similarly to the built-in walk()
method, with the exception that it keeps track of the index of each
component in case it has to be fetched later.

Listing 12-5. Manually visiting each part of a multipart method
#!/usr/bin/env python3

Programming in Python: The Basics

import argparse, email.policy, sys

def walk(part, prefix=’’):

yield prefix, part

for i, subpart in enumerate(part.iter_parts()):

yield from walk(subpart, prefix + ‘.{}’.format(i))

def main(binary_file):

policy = email.policy.SMTP

message = email.message_from_binary_file(binary_file,

policy=policy)

for prefix, part in walk(message):

line = ‘{} type={}’.format(prefix, part.get_content_type())

if not part.is_multipart():

content = part.get_content()

line += ‘ {} len={}’.format(type(content).__name__,

len(content))

cd = part[‘Content-Disposition’]

is_attachment = cd and cd.split(‘;’)[0].lower() ==

‘attachment’

if is_attachment:

line += ‘ attachment’

filename = part.get_filename()

if filename is not None:

line += ‘ filename={!r}’.format(filename)

print(line)

if __name__ == ‘__main__’:

parser = argparse.ArgumentParser(description=’Display MIME

structure’)

parser.add_argument(‘filename’, nargs=’?’, help=’File

containing an email’)

args = parser.parse_args()

if args.filename is None:

main(sys.stdin.buffer)

else:

with open(args.filename, ‘rb’) as f:

main(f)

You can use this script to generate any of the e-mail messages that the
previous scripts can. (Alternatively, you may send it a real-life e-mail.) The
following are the results of running it against the most complex message
that can be generated with the aforesaid scripts.
$ python3 build_mime_email.py -i attachment.txt attachment.gz
> email.txt
$ python3 display_structure.py email.txt
type=multipart/mixed

.0 type=multipart/alternative

.0.0 type=multipart/related

.0.0.0 type=text/html str len=215

.0.0.1 type=image/gif bytes len=35 attachment filename=’black-
dot.gif’
.0.1 type=text/plain str len=60

.1 type=text/plain str len=14 attachment
filename=’attachment.txt’
.2 type=application/octet-stream bytes len=32 attachment
filename=’attachment.gz’

The part numbers that appear at the beginning of each line of output can be
utilised in other code to dive right into the message and retrieve the specific
part you’re looking for by passing each integer index to the get payload()
method. For instance, if you wanted to get the black dot GIF image from
within this message, you’d use
part = message. get payload(0).get payload(0). get payload(1)
It’s worth repeating that only multipart parts are permitted to contain
additional MIME subparts. Every nonmultipart content type part is a leaf
node in the tree above, carrying simple content with no further e-mail-
relevant structure beneath it.

Encodings for Headers
Because of the email module, the parsing scripts above will correctly accept
internationalised headers that encode special characters according to RFC
2047 rules. Listing 12-6 creates an e-mail that you may use to conduct tests.
Because Python 3 source code is UTF-8 encoded by default, international
characters can be included without the need for a -*- coding: utf-8 -*-
declaration at the top, as with Python 2.

Listing 12-6. To test the parsing script, create an internationalised email.
#!/usr/bin/env python3

Programming in Python: The Basics

import email.message, email.policy, sys

text = “””\

Hwær cwom mearg? Hwær cwom mago?

Hwær cwom maþþumgyfa?

Hwær cwom symbla gesetu?

Hwær sindon seledreamas?”””

def main():

message = email.message.EmailMessage(email.policy.SMTP)

message[‘To’] = ‘Böðvarr <recipient@example.com>’

message[‘From’] = ‘Eardstapa <sender@example.com>’

message[‘Subject’] = ‘Four lines from The Wanderer’

message[‘Date’] = email.utils.formatdate(localtime=True)

message.set_content(text, cte=’quoted-printable’)

sys.stdout.buffer.write(message.as_bytes())

if __name__ == ‘__main__’:

main()

Because of the peculiar letters in the To: header, the output e-mail employs
a particular ASCII encoding of binary data. In addition, as previously
mentioned, selecting a quoted-printable content encoding for the body
avoids creating a block of Base64 data and instead represents most of the
characters by their plain ASCII values, as seen in the results.
To: =?utf-8?b?QsO2w7B2YXJy?= <recipient@example.com>
From: Eardstapa <sender@example.com>
Subject: Four lines from The Wanderer
Date: Fri, 27 Feb 2019 22:11:48 -0400
Content-Type: text/plain; charset=”utf-8”
Content-Transfer-Encoding: quoted-printable
MIME-Version: 1.0
Hw=C3=A6r cwom mearg? Hw=C3=A6r cwom mago?
Hw=C3=A6r cwom ma=C3=BE=C3=BEumgyfa?
Hw=C3=A6r cwom symbla gesetu?
Hw=C3=A6r sindon seledreamas?

Because the email module handles all of the decoding and processing, the
display script correctly untangles everything.
$ python3 build_unicode_email.py > email.txt
$ python3 display_email.py email.txt
From: bpbonline <sender@example.com>
To: john <recipient@example.com>
Date: Tue, 26 Feb 2019 17:14:01 -0400
Subject: Four lines from The Wanderer
how are you? how are you?
how are you?
how are you?
how are you?

Read the Python documentation for the lower-level email.header module
and, in particular, its Header class if you ever want to learn more about e-

mail header encoding.

Dates Parsing
The formatdate() method in email.utils, which by default utilises the current
date and time, was utilised in the scripts above to generate standards-
compliant dates. They can, however, be given a low-level Unix timestamp.
If you’re doing higher-level date manipulation and you’ve created a
datetime object, you can just use the format datetime() function to achieve
the same thing.
When parsing an e-mail, you can use three more methods in email.utils to
do the inverse action.

Both parsedate() and parsedate tz() return time tuples of the type that
Python provides at a low level through its time module, and which
match the traditional C-language norms for date arithmetic and
representation.
Instead of returning a whole datetime object, the current parsedate to
datetime() function returns a full datetime object, which is usually the
call you’ll want to make in most production code.

Note that many e-mail systems do not follow the appropriate standards
when generating Date headers, and while these functions strive to be
forgiving, there may be times when they are unable to provide a correct date
value and instead return None. Before presuming that you have been given
a date back, you should check for this value. Following are a few examples
of calls.
>>> from email import utils
>>> utils.parsedate(‘Tue, 26 Feb 2019 17:14:01 -0400’)
(2019, 2, 26, 17, 14, 1, 0, 1, -1)
>>> utils.parsedate_tz(‘Tue, 26 Feb 2019 17:14:01 -0400’)
(2019, 2, 26, 17, 14, 1, 0, 1, -1, -14400)
>>> utils.parsedate_to_datetime(‘Tue, 26 Feb 2019 17:14:01
-0400’)
datetime.datetime(2019, 2, 26, 17, 14, 1,
tzinfo=datetime.timezone(datetime.timedelta(-1, 72000)))

If you’re going to conduct any date arithmetic, I strongly advise you to look
at the third-party pytz module, which has become a community standard for
date manipulation.

Conclusion
Email.message is a strong tool. R. David Murray’s EmailMessage class,
which was introduced in Python 3.4, makes both the creation and
consumption of MIME messages considerably easier than in previous
versions of Python. The only warning, as always, is to pay great attention to
the difference between bytes and strings. To ensure that every step is
completed successfully, try to do all of your socket or file I/O in bytes and
let the email module handle all of the encoding.
In most cases, an e-mail is created by creating an EmailMessage object and
then defining headers and content. Headers are set by treating the message
as a dictionary with case-insensitive string keys, and storing string values
that will be appropriately encoded upon output if any of its characters are
non-ASCII. Set content(), add related(), add alternative(), and add
attachment() are a series of four methods that handle both text and bytes
payloads correctly in all instances.
Any of the email module’s parsing routines (message from binary file() is
the way used in the listings in this chapter) with a policy parameter turning
on all of the contemporary features of the EmailMessage class can be read
back in and analysed as an EmailMessage object. Each resulting object will
be either a multipart with more subparts inside it, or a single piece of
material that Python will return as a string or bytes data. On both output and
input, headers are automatically internationalised and decoded. Methods in
email support the specific Date header’s format. Use instances of the
current Python datetime object in your code to read and write its value.
The usage of the SMTP protocol for e-mail transmission will be the focus
of the next chapter.

CHAPTER 13
Simple Mail Transfer Protocol(SMTP)

The actual transportation of e-mail between systems is handled by SMTP,
the Simple Mail Transport Protocol, as mentioned at the start of Chapter 12.
RFC 821 was the first to define SMTP in 1982, and RFC 5321 is the most
recent RFC to define it. In most cases, the protocol serves two purposes:

1. When a user types an e-mail message on a laptop or desktop computer,
the e-mail client sends the message to a server via SMTP, which then
forwards it to its intended recipient.

2. E-mail servers utilise SMTP to transmit messages, sending each
message across the Internet from one server to the next until it reaches
the server responsible for the recipient’s domain (the part of the e-mail
address after the @ sign).

The way SMTP is utilised for submission and delivery differs in various
ways. However, before I go into detail about them.

Structure:
Webmail Services vs. E-mail Clients
Clients are on the rise
The Transition to Webmail
SMTP’s Functions
E-mail transmission
The Envelope Recipient and the Headers
Several Hops
The SMTP Library is an introduction to the SMTP protocol
Error Handling and Debugging Conversations
Using EHLO to Gather Information

Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
SMTP authentication
SMTP Pointers
Conclusion

Objectives:
In these chapter we’ll learn about the difference between people who check
their e-mail using a local e-mail client and those who utilise a webmail
service.

Webmail Services vs. E-mail Clients
If I trace the history of how people have historically worked with Internet e-
mail, the role of SMTP in message submission, when the user presses Send
and expects a message to wing its way across the Internet, will probably be
the least puzzling.
The most important point to grasp is that users have never been required to
wait for an e-mail message to be delivered. Before an e-mail message is
delivered to its intended recipient, this process can take a long time—and
many dozen attempts—to complete. Delays could be caused by a variety of
factors, including: A message may have to wait because other messages are
also being transferred via a low-bandwidth link, the destination server may
be unavailable for a few hours, or its network may be down due to a bug.
If the email is intended for a large organisation, such as a university, it may
have to make many “hops” as it arrives at the main university server, then is
routed to a smaller e-mail machine for one of the institution’s colleges, and
lastly to a departmental e-mail server. Thus, understanding what happens
when the user hits Send entails understanding how the completed e-mail
message is submitted to the first of potentially multiple e-mail queues
where it can languish until the conditions are just right for transmission.
(This will be covered in the section on e-mail delivery that follows.)

The Command Line Was the Beginning
The initial generation of e-mail users were given usernames and passwords
by their employers or universities, allowing them command-line access to

the massive mainframes that housed user data and general-purpose
programmes. Each large machine had an e-mail daemon that maintained an
outgoing queue, which was usually located on the same machine where
users were busy inputting messages into small command-line e-mail
programmes. Mail was followed by the fancier mailx, which was later
overshadowed by the far prettier interfaces—with larger capabilities—of
elm, pine, and finally mutt.

THE SMTP PROTOCOL
Purpose: deliver e-mail to a server

Standard: RFC 2821
Runs atop: TCP or TLS

Port number: 53
Libraries: smtplib

However, the network was not even engaged in the simple task of e-mail
submission for all of these early users; after all, the e-mail client and server
were on the same system! The actual method of bridging this little gap and
executing e-mail submission was usually hidden behind a command-line
client programme that came included with the server software and knew
exactly how to communicate with it. Sendmail, the first widely used e-mail
daemon, came with a programme called /usr/lib/sendmail for sending e-
mail.
Because sendmail was created to communicate with the first-generation
client programmes for reading and writing e-mail, the e-mail daemons that
have since gained prominence, such as qmail, postfix, and exim, are based
on it. , for example, generally followed suit by providing their own
sendmail binary (its official home is now /usr/sbin, thanks to recent file
system standards) that, when invoked by the user’s e-mail programme,
follows that specific e-mail daemon’s peculiar procedure for getting a
message moved into the queue.
When an e-mail was received, it was usually saved in the file of the user to
whom the message was directed. The command-line e-mail client could
simply open this file and parse it to discover what messages were awaiting
the user’s attention. Because the focus of this book is on how e-mail uses
the network, it does not address these mailbox forms. If you’re intrigued,

you may look at the Python Standard Library’s mailbox package, which
supports all of the odd and unusual methods that various e-mail
programmes have read and written messages to disc throughout the years.

Clients are on the rise
The following generation of Internet users was frequently unfamiliar with
the concept of a command line. Users were familiar with the Apple
Macintosh’s graphical interface—or, subsequently, the Microsoft Windows
operating system—and anticipated to be able to do tasks by clicking an icon
and executing a graphical programme. As a result, a variety of e-mail
clients were created to bring this Internet service to the desktop.
Mozilla Thunderbird and Microsoft Outlook are only two of the most
popular clients that are still used today.
The flaws in this strategy are clear. To begin with, reading incoming e-mail
was changed from a straightforward process for your e-mail program—
which could previously open and read a local file—to one that required a
network connection. When you started your graphical e-mail software, it
had to connect to a full-time server that had been receiving e-mail on your
behalf while you were away and download the messages to your local
machine.
Second, users are notorious for failing to back up their desktop and laptop
file systems, leaving clients who downloaded and stored communications
locally vulnerable to obliteration if the laptop or desktop hard drive crashed.
. University and industrial servers, on the other hand, frequently had small
armies of personnel entrusted with maintaining their data preserved, copied,
and safe, despite their clumsy command lines.
Third, an e-mail server and its queue of outgoing messages are rarely
acceptable locations for laptop and desktop computers. Users, after all,
frequently turn off their computers when they are finished with them,
disconnect from the Internet, or leave the Internet café, causing their
wireless signal to be lost. Outgoing messages typically take more than a few
minutes to complete their retries and final transmission, therefore
completed e-mails must be submitted to a full-time server for queuing and
delivery.

However, programmers are resourceful individuals who devised a number
of solutions to these issues. First, new protocols were developed—first, the
Post Office Protocol (POP), which I’ll discuss in Chapter 14, and then the
Internet Message Access Protocol (IMAP), which I’ll discuss in Chapter 15
—that allowed a user’s e-mail client to authenticate with a password and
download e-mail from a full-time server that had previously been storing it.
Passwords were required to prevent unauthorised access to your Internet
service provider’s servers and reading of your e-mail! The first issue was
thus resolved. But what about the second issue, persistence, which involves
avoiding the loss of e-mail when hard drives on desktop and laptop
computers fail? This sparked two new developments. People who used POP
learnt to switch off the default mode, in which e-mail on the server is
deleted once it is downloaded, and to leave copies of critical e-mails on the
server, from which they might retrieve e-mail later if they had to restart
their computer and start from scratch. Second, they began migrating to
IMAP, assuming that their e-mail server supported this more modern
protocol. They could not only leave incoming e-mail messages on the
server for protection, but they could also organise them in folders right on
the server using IMAP! Instead of needing to manage an e-mail storage
space on their laptop or desktop, they could utilise their e-mail client
programme as a simple window through which to access e-mail that was
saved on the server.
Finally, when a user finishes writing an e-mail message and hits Send, how
does the message return to the server? This task—officially referred to as e-
mail submission—brings me back to the topic of this chapter; e-mail
submission uses the SMTP protocol. However, as I’ll describe, there are
often two differences between SMTP as it is spoken between Internet
servers and the way it is spoken during client e-mail submission, and both
variances are driven by the present requirement to combat spam. To begin,
most ISPs prohibit outgoing TCP connections to port 25 from laptops and
desktops, preventing viruses from hijacking these small computers and
using them as e-mail servers. Instead, most e-mail submissions are sent to
port 587. Second, e-mail clients employ authenticated SMTP, which
includes the user’s username and password, to prevent spammers from
connecting to your ISP and stating they wish to send a message allegedly
from you.

E-mail has been delivered to the desktop through various means, both in
major organisations such as colleges and enterprises and in ISPs that cater
to home users. It’s still usual to give each user instructions that tell them to:

Download and install an e-mail programme such as Thunderbird or
Outlook.
Type in the hostname and protocol for retrieving e-mail.
Set the name of the outgoing server and the SMTP port number.
Assign a username and password that can be used to authenticate
connections to both services.

Although e-mail clients and servers can be complex to set up and maintain,
they were formerly the only option to provide e-mail to a new generation of
users who stared at enormous colourful displays using a familiar graphical
interface. Nowadays, they give customers an enviable degree of freedom:
their ISP simply decides whether to offer POP, IMAP, or both, and the user
(or, at the very least, non-enterprise user!) is free to experiment with several
e-mail applications before settling on one they like.

The Transition to Webmail
Finally, there has been another generational transition on the Internet. Users
used to have to download and install a slew of different clients in order to
take use of everything the Internet has to offer. Many long-time readers may
recall having Windows or Mac computers on which they eventually
installed client programmes for protocols as diverse as Telnet, FTP, the
Gopher directory service, Usenet newsgroups, and, later, the World Wide
Web. (When Unix users initially logged in to a well-configured workstation,
they often found clients for each basic protocol already installed, though
they may have opted to install more advanced replacements for some of the
applications, such as ncftp in place of the cumbersome default FTP client.)
But not any longer! Today’s Internet user is only aware of one client: their
web browser. The Web is not only replacing all traditional Internet
protocols—users browse and fetch files on web pages, not through FTP;
they read message boards, rather than connecting to Usenet—but it is also
obviating the need for many traditional desktop clients, thanks to the fact
that web pages can now use JavaScript to respond and redraw themselves as
the user clicks and types on their keyboard. If your application is one that

could be given through an interactive web page, why persuade thousands of
customers to download and install a new e-mail client, clicking through
multiple warnings about how your software can harm their computer?
In fact, the web browser has grown in prominence to the point where many
Internet users are unaware that they have one. As a result, they interchange
the phrases “Internet” and “Web,” believing that both terms relate to “all
those documents and links that provide me with Facebook, YouTube, and
Wikipedia.” This lack of awareness that they are viewing the Web’s glory
through a specific client programme with a name and identity—say, through
the pane of Internet Explorer—is a constant source of frustration for
evangelists for alternatives such as Firefox, Google Chrome, and Opera,
who find it difficult to persuade people to switch from a programme they
aren’t even aware they are using!
Obviously, if such individuals are to read e-mail, they must have access to a
computer. As a result, there are numerous web sites that provide e-mail
services through the browser—the most popular being Gmail and Yahoo!
Mail—as well as server software, such as the popular SquirrelMail, that
system administrators can install if they want to provide webmail to users at
their school or business.
What does this entail for e-mail protocols and the network as a whole?
Surprisingly, the webmail boom effectively transports us back to a simpler
era when e-mail submission and reading were both private operations
confined to a single mainframe server and rarely included the use of public
protocols at all. Of course, these modern services, particularly those
provided by huge ISPs and firms such as Google and Yahoo!, must be
massive operations involving hundreds of servers spread across the globe;
hence, network protocols must undoubtedly be engaged at every level of e-
mail storage and retrieval.
But the point is that these are now internal processes within the webmail
service provider’s corporation.
When you click Send, who knows what protocol Google or Yahoo! uses
internally to pass the new message from the web server receiving your
HTTP POST to a mail queue from which it can be delivered? You browse
e-mail in your web browser; you write e-mail using the same interface; and
when you click Send, who knows what protocol Google or Yahoo! uses
internally to pass the new message from the web server receiving your

HTTP POST to a mail queue from which it can be delivered? It could be
SMTP, an internal RPC protocol, or an activity on shared file systems to
which both the web and e-mail servers are connected.
The crucial thing to remember for the purposes of this book is that you will
never know if POP, IMAP, or something else is at work behind the webmail
interface you use to manage your messages unless you are an engineer
working at such an organisation.
While a result, e-mail browsing and submission become a black box: your
browser interacts with a web API, and you’ll observe plain old SMTP
connections originating from and going to the enormous business as e-mail
is delivered in both directions on the other end. Client protocols are
eliminated from the mix in webmail, bringing us back to the days of pure
server-to-server unauthenticated SMTP.

SMTP’s Functions
The above tale should have helped you organise your thoughts about
Internet e-mail protocols. Hopefully, it has also helped you see how they
work together in the larger picture of sending and receiving messages from
people.
This chapter, on the other hand, focuses on a more specific topic: the
Simple Mail Transport Protocol. I’ll start by going through the
fundamentals in terminology you learnt in Part 1 of this book:

The SMTP protocol is based on TCP/IP.
Authentication is optional for connections.
You have the option of encrypting or not encrypting your connections.

Most e-mail communications across the Internet these days appear to be
unencrypted, which means that whomever controls the Internet backbone
routers may theoretically read massive volumes of other people’s e-mail.
Given the information in the previous section, what are the two ways that
SMTP is used?
For starters, SMTP can be used to send e-mail between a client e-mail
application like Thunderbird or Outlook and a server at a company that has
provided the user with an e-mail account. These connections typically
require authentication to prevent spammers from connecting and sending

millions of messages on behalf of a user without their password. When a
message is received, the server places it in a delivery queue so that the e-
mail client can forget about it and trust that the server will continue to try to
deliver it.
Second, SMTP is a protocol used by Internet e-mail servers to transfer
messages from one location to another. Because large organisations like
Google, Yahoo!, and Microsoft don’t know each other’s users’ passwords,
when Yahoo! receives an e-mail from Google claiming to be sent from a
@gmail.com user, Yahoo! simply has to believe them (or not—sometimes
organisations blacklist each other if too much spam is making its way
through their servers). When Hotmail’s e-mail server stopped taking his e-
mail newsletters from GoDaddy’s servers due to purported spam problems,
this happened to a friend of mine.
As a result, there is often no authentication between servers communicating
via SMTP, and encryption against spying routers appears to be utilised
relatively infrequently. Due to the problem of spammers connecting to e-
mail servers and claiming to be sending e-mail from another company’s
subscribers, an attempt has been made to limit which servers can send e-
mail on behalf of an organisation. Some e-mail servers use the Sender
Policy Framework (SPF), specified in RFC 4408, to determine whether the
server with whom they’re communicating has the authority to deliver the e-
mails it’s sending.
Let’s get down to business and talk about how you’ll use SMTP in your
Python apps. A Python-driven SMTP session is seen in Figure 13-1.

E-mail transmission
Before we get into the nitty gritty of the SMTP protocol, a word of caution:
if you’re writing an interactive programme, daemon, or web site that needs
to send e-mail, your site or system administrator (if that’s not you) may
have an opinion on how your programme sends e-mail, and they may be
able to save you a lot of time by doing so!
As previously stated, sending e-mail usually necessitates a queue in which a
message can sit for seconds, minutes, or even days before being properly
delivered to its intended recipient. As a result, you shouldn’t use Python’s
smtplib to send e-mail straight to a message’s destination in your front-end

apps, because if the initial transmission attempt fails, the message would be
lost. Then you’ll have to write a full mail transfer agent (MTA), or e-mail
server, as the RFCs describe it, and give it a full standards-compliant retry
queue.This is not only a massive project, but it’s also one that’s been done
well before, and you’d be prudent to use one of the existing MTAs to help
you out. Before attempting to write something on your own, look into
postfix, exim, and qmail. Making SMTP connections out into the world
from Python is a rare occurrence. Your system is more than likely to fail.
One of two things will be told to you by the administrator:

You should establish an authenticated SMTP connection to an existing
e-mail server. within your corporation utilizing a username and
password specific to your application
That you should run a local binary on the system, such as the sendmail
application, that the system administrator has previously configured to
allow local programmes to operate send an email Sample code for
launching a sendmail compliant application can be found in the
Python Library FAQ. Have a look at the next section.

“How can I send email from a Python script?” you might wonder.
http://docs.python.org/faq/library.html is a good place to start. Because this
book is about networking, I won’t go into great depth about this option.
However, don’t forget to do it raw. Only use SMTP if there is no other
option for sending e-mail on your workstation.

The Envelope Recipient and the Headers
The main notion in SMTP that beginners frequently misunderstand is that
the addressee headers you’re used to—To, Cc (carbon copy), and Bcc (blind
carbon copy)—are not used by the SMTP protocol to determine where your
e-mail goes! Many users are taken aback by this. After all, practically every
e-mail programme asks you to fill in the addressee areas, and when you
click Send, the message is sent to those addresses. What’s more natural than
that? However, this is a feature of the email client, not the SMTP protocol:
the protocol simply knows that each message has a “envelope” around it
that names a sender and certain recipients. SMTP is unconcerned about
whether such names are ones it can locate in the message’s headers.

http://docs.python.org/faq/library.html

If you think about the Bcc blind carbon-copy header for a moment, you’ll
see why e-mail has to work this way. The Bcc header, unlike the To and Cc
headers, which make it to the e-destination mail’s and allow each recipient
to see who else was given that e-mail, specifies those you wish to get the e-
mail without the other recipients knowing. Blind copies allow you to
silently bring a message to the attention of someone without alerting the
rest of the e-recipients. mail’s
The fact that a header like Bcc exists, which may appear when you prepare
a message but may not appear in the outgoing message, raises two points:

Your e-mail client modifies the headers of your message before
sending it. The client typically adds headers as well, such as a unique
message ID and possibly the name of the e-mail client itself (an e-mail
I just received on my desktop, for example, identifies the X-Mailer
that sent it as YahooMailClassic), in addition to removing the Bcc
header so that none of the e-recipients mail’s receive a copy of it.
An e-mail can be routed through SMTP to a destination address that
isn’t stated in the e-mail headers or text—and it can do so for the most
valid of reasons.

This approach also aids in the support of e-mailing lists, allowing an e-mail
with the To line advocacy@python.org to be distributed to the dozens or
hundreds of people who subscribe to that list without exposing all of their e-
mail addresses to every list reader without rewriting headers.
As you read the following SMTP explanations, keep in mind that the
headers and body of the email message are distinct from the “envelope
sender” and “envelope recipient” that will be discussed in the protocol
specifications. Yes, whether you’re using /usr/sbin/ sendmail, Thunderbird,
or Google Mail, your e-mail client probably only asked for the recipient’s e-
mail address once; but it then used it twice: once in the To header at the top
of the message itself, and then again “outside” the message when it spoke
SMTP to send the e-mail on its way.

Several Hops
E-mail used to go in a single SMTP “hop” from the mainframe on which it
was composed to the machine on whose disc the recipient’s inbox was

stored. Messages nowadays frequently pass via a half-dozen or more
servers before reaching their intended recipient. As the message approaches
its destination, the SMTP envelope recipient, as mentioned in the preceding
section, changes several times.
This should be illustrated with an example. Although some of the following
details are made up, they should give you a good picture of how messages
travel across the Internet in real life.
Consider a worker in delhi’s core IT group telling a buddy that his e-mail
address is business@bpbonline.com. When the buddy sends him an email,
his e-mail provider looks up the Domain Name Service (DNS; see Chapter
4), receives a series of MX records in response, and connects to one of
those IP addresses to deliver the message. Isn’t it simple enough?
The server for gatech.edu, on the other hand, serves the entire campus! It
consults a table to locate bpbonline, locates his department, and discovers
that his official e-mail address is business@bpbonline.com.
So the gatech.edu server performs a DNS lookup for oit.gatech.edu and
then sends the message to the Office of Information Technology’s e-mail
server through SMTP (the message’s second SMTP hop, if you’re keeping
track). However, OIT has long since abandoned their single-server strategy,
which had all of their e-mail stored on a single Unix server. They now run a
sophisticated e-mail system that customers may access via webmail, POP,
and IMAP.
Incoming e-mail to oit.gatech.edu is first routed through one of several
spam-filtering servers (third hop), such as spam3.oit.gatech.edu. After then,
if it passes the spam check and isn’t deleted, it’s sent to one of eight
redundant e-mail servers at random, and after the fourth hop, it’s in the
queue on mail7.gatech.edu. The routing servers, such as mail7, can then
query a central directory service to find out which users’ mailboxes are
hosted by which back-end mail stores, which are connected to large disc
arrays. So mail7 performs an LDAP lookup for john, determines that his e-
mail is stored on the anvil.oit.gatech.edu server, and the e-mail is delivered
to anvil and written to its redundant disc array in a fifth and final SMTP
hop.
That’s why sending and receiving e-mail takes at least a few seconds on the
Internet: Large companies and ISPs frequently have multiple levels of

servers through which a message must pass before being delivered. How
can you track the path of an e-mail? The SMTP protocol, as previously
stated, does not read e-mail headers, but it does have its own concept about
where a message should go—which, as you have just seen, might alter with
each hop a message takes toward its destination. However, it turns out that
e-mail servers are encouraged to add new headers in order to monitor a
message’s winding path from origin to destination.
These headers are known as Received headers, and they’re a gold mine for
system administrators trying to figure out why their e-mail systems aren’t
working. Examine any e-mail message and request that your e-mail client
show all of the headers. You should be able to observe each step the
message took on its way to its intended recipient. (Spammers frequently use
many bogus Received headers at the top of their messages to make it appear
as if the message came from a legitimate source.) Finally, when the last
server in the chain is able to successfully write the message to physical
storage in someone’s mailbox, a Delivered-to header is likely written.
Because each server adds its Received header to the top of the e-mail
message, this saves time and prevents each server from having to sift
through all of the previously written Received headers. You should read
them in reverse order: the oldest Received header will be the final one
presented, so as you read up the screen toward the top, you will be
following the e-mail from its source to its destination. Try it: open a recent
e-mail message, choose View All Message Headers or Show Original from
the View menu, and check for the received headers at the top. Did the
communication take you longer or shorter than you expected to get to your
inbox?

The SMTP Library is an introduction to the
SMTP protocol
The Python Standard Library module smtplib contains Python’s built-in
SMTP implementation, which makes it straightforward to use SMTP for
simple tasks.
The programmes in the examples below are written to accept a number of
command-line parameters, including the name of an SMTP server, a sender
address, and one or more recipient addresses. Please use these with caution;

only identify an SMTP server that you own or that you know will be
delighted to receive your test messages, should your IP address get
blacklisted for spamming!
If you don’t know where to look for an SMTP server, consider installing an
e-mail daemon locally, such as postfix or exim, and then pointing these
sample programmes at localhost. Some UNIX, Linux, and Mac OS X
systems already have an SMTP server listening for connections from the
local workstation, such as one of these.
Otherwise, get a correct hostname and port from your network
administrator or Internet provider.
It’s important to remember that you can’t just pick an e-mail server at
random; several only store or forward e-mail from specific permitted
clients.
Now that you’ve taken care of that, you may continue on to Listing 13-1,
which shows a very basic SMTP application.

Listing 13-1. Using smtplib.sendmail to send email ()
#!/usr/bin/env python3
Programming in Python: The Basics
import sys, smtplib
message_template = “””To: {}
From: {}
Subject: Test Message from simple.py
Hello,
This is a test message sent to you from the simple.py program
in Programming in Python: The Basics.
“””
def main():

if len(sys.argv) < 4:
name = sys.argv[0]
print(“usage: {} server fromaddr toaddr
[toaddr...]”.format(name))
sys.exit(2)
server, fromaddr, toaddrs = sys.argv[1], sys.argv[2],
sys.argv[3:]

message = message_template.format(‘, ‘.join(toaddrs),
fromaddr)
connection = smtplib.SMTP(server)
connection.sendmail(fromaddr, toaddrs, message)
connection.quit()
s = ‘’ if len(toaddrs) == 1 else ‘s’
print(“Message sent to {} recipient{}”.format(len(toaddrs),
s))

if __name__ == ‘__main__’:
main()

Because it employs a very powerful and broad function from the Python
Standard Library, this programme is fairly straightforward. It begins by
generating a simple message using the user’s command-line arguments (see
Chapter 12 for more information on generating fancier messages that
include items other than plain text). The smtplib.SMTP object is then
created, which connects to the chosen server. Finally, a call to sendmail is
all that is required (). If that succeeds, you know the message was received
without error by the e-mail server.
As previously stated in this chapter, the idea of who receives the message—
the “envelope recipient”—is independent from the actual text of the
message at this level. This software creates a To header that has the same
addresses as the recipients of the message; however, the To header is just a
piece of text that could say anything else. (Whether that “anything else” is
gladly shown by the recipient’s e-mail client or causes the message to be
discarded as spam by a server along the route is another question!)
If you execute the programme from the book’s network playground, it
should be able to connect successfully as follows:
mail.example.com sender@example.com recipient@example.com $
python3 simple.py
1 recipient received the message successfully.
The sendmail() method, thanks to the hard work of the Python Standard
Library’s authors, may be the last SMTP call you’ll ever need! But first,
let’s take a closer look at how SMTP works to see what happens behind the
scenes to get your message delivered.

Error Handling and Debugging Conversations
While developing with smtplib, you may encounter a variety of exceptions.
They are as follows:

socket.gaierror for address lookup errors
socket.error for network and communication difficulties in general
Other addressing issues can be found in socket.herror.
smtplib smtplib smtplib smt

For SMTP communication difficulties, use SMTPException or a subclass of
it.
The first three errors are raised in the operating system’s TCP stack,
detected and raised as exceptions by Python’s networking code, and passed
straight through the smtplib module and up to your programme; they are
raised in the operating system’s TCP stack, detected and raised as
exceptions by Python’s networking code, and passed straight through the
smtplib module and up to your programme. All faults that genuinely impact
the SMTP e-mail communication will result in a smtplib.SMTPException
as long as the underlying TCP socket operates. The smtplib module also
allows you to get a series of detailed messages detailing the procedures
involved in sending an email. You can use the following option to activate
that degree of detail:
connection.set debuglevel(1)

You should be able to track down any issues with this option. A sample
application that provides basic error handling and debugging can be found
in Listing 13-2.

Listing 13-2. An SMTP Client with More Caution
#!/usr/bin/env python3
Programming in Python: The Basics.
import sys, smtplib, socket
message_template = “””To: {}
From: {}
Subject: Test Message from simple.py
Hello,
This is a test message sent to you from the debug.py program

in Programming in Python: The Basics.
“””
def main():

if len(sys.argv) < 4:
name = sys.argv[0]
print(“usage: {} server fromaddr toaddr
[toaddr...]”.format(name))
sys.exit(2)

server, fromaddr, toaddrs = sys.argv[1], sys.argv[2],
sys.argv[3:]
message = message_template.format(‘, ‘.join(toaddrs),
fromaddr)

try:
connection = smtplib.SMTP(server)
connection.set_debuglevel(1)
connection.sendmail(fromaddr, toaddrs, message)

except (socket.gaierror, socket.error, socket.herror,
smtplib.SMTPException) as e:
print(“Your message may not have been sent!”)
print(e)
sys.exit(1)

else:
s = ‘’ if len(toaddrs) == 1 else ‘s’
print(“Message sent to {} recipient{}”.format(len(toaddrs),
s))
connection.quit()

if __name__ == ‘__main__’:
main()

Although this programme appears to be similar to the previous one, the
outcome will be substantially different. Consider Listing 13-3 as an
illustration.

Listing 13-3. smtplib Output Troubleshooting
$ python3 debug.py mail.example.com sender@example.com
recipient@example.com
send: ‘hello [127.0.1.1]\r\n’
reply: b’250-guinness\r\n’

reply: b’250-SIZE 33444432\r\n’
reply: b’250 HELP\r\n’
reply: retcode (250); Msg: b’guinness\nSIZE 33554432\nHELP’
send: ‘mail FROM:<sender@example.com> size=212\r\n’
reply: b’250 OK\r\n’
reply: retcode (250); Msg: b’OK’
send: ‘rcpt TO:<recipient@example.com>\r\n’
reply: b’250 OK\r\n’
reply: retcode (250); Msg: b’OK’
send: ‘data\r\n’
reply: b’354 End data with <CR><LF>.<CR><LF>\r\n’
reply: retcode (354); Msg: b’End data with <CR><LF>.<CR><LF>’
data: (354, b’End data with <CR><LF>.<CR><LF>’)
send: b’To: recipient@example.com\r\nFrom:
sender@example.com\r\nSubject: Test Message from
simple.py\r\n\r\nHello,\r\n\r\nThis is a test message sent to
you from the debug.py program\r\nin
Programming in Python: The Basics.\r\n.\r\n’
reply: b’250 OK\r\n’
reply: retcode (250); Msg: b’OK’
data: (250, b’OK’)
send: ‘quit\r\n’
reply: b’221 Bye\r\n’
reply: retcode (221); Msg: b’Bye’
Message sent to 1 recipient

The dialogue that smtplib has with the SMTP server across the network
may be seen in this example.
The details provided here will become more relevant when you create code
that leverages more complex SMTP features, so let’s take a look at what’s
going on.
First, the client (the smtplib library) sends an EHLO command with your
hostname in it (an “extended” successor to a more ancient command
termed, more readably, HELO). The remote server answers with its own
hostname as well as a list of any optional SMTP features it offers.
The client then executes the mail from command, which specifies the
“envelope sender” e-mail address as well as the message’s size. The server

has the option to reject the message at this point (for example, if it believes
you are a spammer), but in this case it answers with 250 Ok. (the code 250
is what matters in this case; the rest content is essentially a human-readable
comment that differs from server to server.)
The client then sends a rcpt to command, specifying the “envelope
recipient,” as mentioned earlier in this chapter.
When utilising the SMTP protocol, you can finally see that it is transmitted
independently from the text of the message. The rcpt to line would list each
recipient if you were sending the message to multiple people. Finally, the
client sends a data command, transmits the actual message (using the
Internet e-mail standard’s verbose carriage-return-linefeed line endings,
you’ll see), and concludes the interaction.
In this example, the smtplib module takes care of everything for you. I’ll go
over how to have greater control over the process so you can take advantage
of some more advanced capabilities later in the chapter.
Don’t be fooled into thinking that just because no errors were discovered
during the first hop, the message is now guaranteed to be delivered. Many
times, an e-mail server will accept a message only to fail to deliver it later.
Reread the “Multiple Hops” section and consider how many chances there
are for that sample message to fail before it reaches its destination!

Using EHLO to Gather Information
It’s useful to know what types of messages a distant SMTP server may
accept on occasion. For example, most SMTP servers have a maximum
message size that they allow, and if you don’t check first, you can send a
very huge message only to have it denied after you’ve finished sending it.
A client would send a HELO instruction to the server as the initial greeting
in the original version of SMTP. ESMTP, a collection of extensions to
SMTP, was created to allow for more robust talks. EHLO, which tells an
ESMTP-aware server that it can reply with more information, will start the
dialogue for ESMTP-aware clients. The maximum message size, as well as
any extra SMTP capabilities that the server offers, are included in this
expanded information.
You must, however, double-check the return code. ESMTP isn’t supported
by all servers. EHLO will just return an error on such servers. In that

situation, you must instead provide a HELO command.
Because I called sendmail() right after constructing the SMTP object in the
previous examples, smtplib automatically sent its own “hello” message to
the server to start the dialogue for you. However, if the Python sendmail()
method detects that you are attempting to send the EHLO or HELO
command on your own, it will not attempt to send a hello command. Listing
13-4 depicts a programme that obtains the server’s limit message size and
returns an error before transmitting if the message is too large.
Listing 13-4. Checking Restrictions on Message Size
#!/usr/bin/env python3
Programming in Python: The Basics.
import smtplib, socket, sys
message_template = “””To: {}
From: {}
Subject: Test Message from simple.py
Hello,
This is a test message sent to you from the ehlo.py program
in Programming in Python: The Basics.”””
def main():

if len(sys.argv) < 4:
name = sys.argv[0]
print(“usage: {} server fromaddr toaddr
[toaddr...]”.format(name))
sys.exit(2)
server, fromaddr, toaddrs = sys.argv[1], sys.argv[2],
sys.argv[3:]

message = message_template.format(‘, ‘.join(toaddrs),
fromaddr)
try:
connection = smtplib.SMTP(server)
report_on_message_size(connection, fromaddr, toaddrs,
message)
except (socket.gaierror, socket.error, socket.herror,
smtplib.SMTPException) as e:
print(“Your message may not have been sent!”)
print(e)
sys.exit(1)

else:
s = ‘’ if len(toaddrs) == 1 else ‘s’
print(“Message sent to {} recipient{}”.format(len(toaddrs),
s))
connection.quit()

def report_on_message_size(connection, fromaddr, toaddrs,
message):

code = connection.ehlo()[0]
uses_esmtp = (200 <= code <= 299)
if not uses_esmtp:
code = connection.helo()[0]
if not (200 <= code <= 299):

print(“Remote server refused HELO; code:”, code)
sys.exit(1)
if uses_esmtp and connection.has_extn(‘size’):
print(“Maximum message size is”,
connection.esmtp_features[‘size’])
if len(message) > int(connection.esmtp_features[‘size’]):
print(“Message too large; aborting.”)
sys.exit(1)

connection.sendmail(fromaddr, toaddrs, message)
if __name__ == ‘__main__’:

main()

If you start this application and the remote server specifies a maximum
message size, the programme will display that size on your screen and
check that your message does not exceed it before sending. (For a small
message like this The check is a little goofy, but the listing demonstrates
how to utilise the pattern with much longer messages.) Here’s an example
of how to run this programme:
$ python3 ehlo.py mail.example.com sender@example.com
recipient@example.com
Maximum message size is 33444432
Message successfully sent to 1 recipient

Examine the section of code that verifies the outcome of an ehlo() or helo()
call (). The first item in the list returned by those two functions is a numeric
result code from the remote SMTP server. Anything between 200 and 299 is
considered a success; anything else is considered a failure. As a result, if the

result falls within that range, you can be confident that the message was
successfully processed by the server.
The same care applies as previously. The fact that the message is accepted
by the first SMTP server does not guarantee that it will be delivered; a later
server may have a smaller maximum size limit.
Aside from message size, ESMTP information is also available. Some
servers, for example, may accept data in raw 8-bit mode if they support the
8BITMIME protocol. Others, as detailed in the next section, may support
encryption. Consult RFC 1869 or your own server’s documentation for
further information on ESMTP and its capabilities, which may differ from
server to server.

Secure Sockets Layer (SSL) and Transport Layer
Security (TLS)
E-mails sent in plain text through SMTP, as previously described, can be
read by anyone with access to an Internet gateway or router through which
the packets transit, including the wireless network at the coffee shop from
which your e-mail client is attempting to send. The ideal answer to this
problem is to encrypt each e-mail with a public key whose private key is
only known by the person to whom you are sending the e-mail; solutions
like the GNU Privacy Guard are free to use for this purpose. Individual
SMTP exchanges between specific pairs of machines can be encrypted and
authenticated using SSL/TLS, as described in Chapter 6, independent of
whether the messages themselves are protected. You’ll discover how
SSL/TLS works with SMTP chats in this section.
Keep in mind that TLS only protects the SMTP “hops” that choose to use it
—even if you carefully use TLS to send an e-mail to a server, you have no
influence over whether that server uses TLS again if your e-mail needs to
be forwarded through another hop to its destination.
The following is the general approach for using TLS in SMTP:

1. As usual, create the SMTP object.
2. Use the EHLO command to send a message. TLS will not be

supported if the remote server does not support EHLO.

3. Check if starttls is present using s.has extn(). If not, the remote server
does not support TLS, and the message can only be sent in plaintext.

4. Create an SSL context object to validate the identity of the server for
you.

5. To begin the encrypted channel, call starttls().
6. Run ehlo() a second time, this time encrypting it.
7. Last but not least, send your message.

When working with TLS, the first question to consider is whether or not to
return an error if TLS is not available. You might want to report an error for
any of the following scenarios, depending on your application:

On the remote side, TLS is not supported.
The remote server fails to correctly create a TLS session, or delivers a
certificate that cannot be validated.
Let’s go over each of these circumstances and see when an error
message is appropriate.

To begin, it’s occasionally reasonable to regard a lack of TLS support as an
error. This could be the case if you’re creating an application that only
communicates with a small number of e-mail servers—for example, e-mail
servers hosted by your employer that you know should support TLS or e-
mail servers hosted by a university that you know supports TLS.
Because TLS is supported by a small percentage of e-mail servers on the
Internet today, an e-mail programme should not interpret its absence as an
error in general. When TLS is available, many TLS-aware SMTP clients
will use it, but if it isn’t, they will fall back to normal, unprotected
communication. This is referred to as opportunistic encryption, and while it
is less safe than encrypting all connections, it protects messages when the
capability is available.
Second, a distant server may claim to be TLS aware but yet fail to establish
a TLS connection successfully. This is frequently due to a server
misconfiguration. You might want to retry a failed encrypted transmission
to such a server over a fresh connection that you don’t even try to encrypt,
just to be safe. Finally, you may find yourself in a circumstance where you
are unable to fully authenticate the remote server. See Chapter 6 for a

detailed discussion of peer validation. If your security policy requires you
to send email only to trusted servers, then a lack of authentication is clearly
a problem that should result in an error notice.
Listing 13-5 is a general-purpose client that supports TLS. If TLS is
available, it will connect to a server and use it; if not, it will fall back and
deliver the message as usual. If the attempt to initiate TLS fails while
talking to a seemingly capable server, it will die with an error.

Listing 13-5. Taking Advantage of TLS
#!/usr/bin/env python3
Programming in Python: The Basics.
import sys, smtplib, socket, ssl
message_template = “””To: {}
From: {}
Subject: Test Message from simple.py
Hello,
This is a test message sent to you from the tls.py program
in Programming in Python: The Basics.
“””
def main():

if len(sys.argv) < 4:
name = sys.argv[0]
print(“Syntax: {} server fromaddr toaddr
[toaddr...]”.format(name))
sys.exit(2)

server, fromaddr, toaddrs = sys.argv[1], sys.argv[2],
sys.argv[3:]
message = message_template.format(‘, ‘.join(toaddrs),
fromaddr)
try:
connection = smtplib.SMTP(server)
send_message_securely(connection, fromaddr, toaddrs,
message)

except (socket.gaierror, socket.error, socket.herror,
smtplib.SMTPException) as e:
print(“Your message may not have been sent!”)
print(e)

sys.exit(1)
else:
s = ‘’ if len(toaddrs) == 1 else ‘s’
print(“Message sent to {} recipient{}”.format(len(toaddrs),
s))
connection.quit()

def send_message_securely(connection, fromaddr, toaddrs,
message):

code = connection.ehlo()[0]
uses_esmtp = (200 <= code <= 299)
if not uses_esmtp:
code = connection.helo()[0]
if not (200 <= code <= 299):

print(“Remove server refused HELO; code:”, code)
sys.exit(1)
if uses_esmtp and connection.has_extn(‘starttls’):
print(“Negotiating TLS....”)
context = ssl.SSLContext(ssl.PROTOCOL_SSLv23)
context.set_default_verify_paths()
context.verify_mode = ssl.CERT_REQUIRED
connection.starttls(context=context)
code = connection.ehlo()[0]
if not (200 <= code <= 299):

print(“Couldn’t EHLO after STARTTLS”)
sys.exit(5)
print(“Using TLS connection.”)

else:
print(“Server does not support TLS; using normal
connection.”)
connection.sendmail(fromaddr, toaddrs, message)

if __name__ == ‘__main__’:
main()

It’s worth noting that the call to sendmail() in the last few listings is the
same whether or not TLS is enabled. TLS hides that layer of complexity
from you once it is begun, so you don’t have to worry about it.

SMTP authentication
Finally, there’s authenticated SMTP, in which your ISP, university, or
company’s e-mail server requires you to log in with a username and
password to confirm you’re not a spammer before allowing you to send e-
mail.
TLS should be used in conjunction with authentication for maximum
security; otherwise, anyone watching the connection will be able to see
your password (and username, for that matter). Establishing a TLS
connection first and then sending your authentication information solely via
the encrypted communications channel is the right way to do this.
Authentication is straightforward; the login() method in smtplib accepts a
username and a password.
An example can be found in Listing 13-6. To avoid repeating code already
seen in prior listings, this listing ignores the previous paragraph’s caution
and sends the username and password over an unauthenticated connection,
which sends them in the clear.

Listing 13-6. Authentication via SMTP (Simple Mail Transfer Protocol)
#!/usr/bin/env python3

Programming in Python: The Basics.

import sys, smtplib, socket

from getpass import getpass

message_template = “””To: {}

From: {}

Subject: Test Message from simple.py

Hello,

This is a test message sent to you from the login.py program

in Programming in Python: The Basics.

“””

def main():

if len(sys.argv) < 4:

name = sys.argv[0]

print(“Syntax: {} server fromaddr toaddr

[toaddr...]”.format(name))

sys.exit(2)

server, fromaddr, toaddrs = sys.argv[1], sys.argv[2],

sys.argv[3:]

message = message_template.format(‘, ‘.join(toaddrs),

fromaddr)

username = input(“Enter username: “)

password = getpass(“Enter password: “)

try:

connection = smtplib.SMTP(server)

try:

connection.login(username, password)

except smtplib.SMTPException as e:

print(“Authentication failed:”, e)

sys.exit(1)

connection.sendmail(fromaddr, toaddrs, message)

except (socket.gaierror, socket.error, socket.herror,

smtplib.SMTPException) as e:

print(“Your message may not have been sent!”)

print(e)

sys.exit(1)

else:

s = ‘’ if len(toaddrs) == 1 else ‘s’

print(“Message sent to {} recipient{}”.format(len(toaddrs),

s))

connection.quit()

if __name__ == ‘__main__’:

main()

Authentication is not supported by the majority of outgoing e-mail servers
on the Internet. The login() attempt will return an Authentication failed
error message if you are using a server that does not allow authentication.
After invoking connection, check connection.has extn(‘auth’) to avoid this.
If the remote server supports ESMTP, use ehlo().
This programme can be executed in the same way as the previous ones. You
will be requested for a username and password if you run it on a server that
supports authentication. If they are accepted, the programme will send your
message to the recipient.

SMTP Pointers
Here are some pointers to help you get started using SMTP clients:

There’s no way to know if the communication was received. Although
you may be aware right away that your effort failed, the absence of an
error does not rule out the possibility that something else will go
wrong before the message is safely sent to the destination.
If any of the recipients fails, the sendmail() function throws an
exception, while the message may still be sent to other recipients. For
more information, look at the exception you receive. You may need to
execute sendmail() separately for each recipient if you need to know
which addresses failed—for example, if you want to try retransmitting
later without making duplicate copies for individuals who have
already received the message. This more naive approach, however,
will result in the message body being sent multiple times, once for
each recipient.
Without certificate checking, SSL/TLS is insecure: you could be
communicating with any old server that has temporarily taken
possession of the typical server’s IP address.
Remember to establish an SSL context object, as described in the TLS
previous example, and pass it as the lone argument to starttls to
support certificate verification ().
The smtplib module in Python is not intended to be used as a general-
purpose e-mail relay. Rather, you should utilise it to send messages to
a local SMTP server, which will handle the actual e-mail delivery.

Conclusion
SMTP is a protocol for sending email messages to email servers. For SMTP
clients, Python provides the smtplib module. You can send messages by
using the sendmail() method of SMTP objects. The To, Cc, and Bcc
message headers in the text of the message are separate from the real list of
recipients; the To, Cc, and Bcc message headers in the text of the message
are separate from the actual list of recipients. During an SMTP discussion, a
variety of exceptions could be raised. Interactive programmes should look
for and deal with these issues effectively.

ESMTP is an SMTP extension. Prior to sending a message, it allows you to
determine the maximum message size supported by a remote SMTP server.
TLS, a method of encrypting your conversation with a distant server, is also
supported by ESMTP. Chapter 6 examined the fundamentals of TLS.
Authentication is required by some SMTP servers. The login() method can
be used to verify your identity. SMTP doesn’t have any features for
downloading messages from a mailbox to your personal PC. To do so,
you’ll need the procedures mentioned in the following two chapters. POP,
as discussed in Chapter 14, is a simple method of receiving and
downloading messages.
The IMAP protocol, which is explained in Chapter 15, is more sophisticated
and powerful.

CHAPTER 14
Post Office Protocol(POP)

The Post Office Protocol (POP) is a straightforward method of retrieving e-
mail from a server. It’s usually accessed via an e-mail client like
Thunderbird or Outlook. If you want a quick overview of where e-mail
clients and protocols like POP fit within the history of Internet e-mail,
revisit the first few sections of Chapter 13.
If you’re tempted to utilise POP, instead use IMAP; Chapter 15 will go over
the characteristics of IMAP that make it a significantly more robust
foundation for distant e-mail access than POP’s primitive functions.
Version 3, sometimes known as POP3, is the most widely used POP
implementation. Because version 3 has become so popular, the names POP
and POP3 are now almost identical. The simplicity of POP is both its
greatest asset and its greatest flaw. If all you need is to access a distant
mailbox, download any new e-mail that has arrived, and delete the e-mail
after it has been downloaded, POP is the way to go. This task will be
completed swiftly and without the use of sophisticated code.
POP, on the other hand, is mostly used to download and remove files. On
the remote side, it does not support numerous mailboxes, nor does it
provide any accurate, durable message identification. This means you can’t
use POP as an e-mail synchronisation protocol, where you leave the
server’s original copy of each e-mail message while making a copy to read
locally. Because you won’t be able to determine which messages you’ve
previously downloaded when you return to the server later. If you require
this functionality, you should look into IMAP, which will be discussed in
Chapter 15.
The poplib module in the Python Standard Library provides a user-friendly
interface for using POP.
It’s worth noting that the Python Standard Library only allows you to
function as a client, not a server. If you need to set up a server, you’ll need
to look for a Python module that includes POP server capability.

Structure:
Compatibility of POP Servers
Authenticating and connecting
Getting Access to Mailbox Information
Messages are downloaded and deleted
Conclusion

Objectives:
This chapter will show you how to connect to a POP server, get mailbox
summary information, download messages, and delete the originals from
the server using poplib. You’ll have covered all of the usual POP features
once you’ve mastered these four jobs.

Compatibility of POP Servers
POP servers have a terrible reputation for not adhering to standards. For
some POP behaviours, standards simply do not exist, leaving the details to
the makers of server software. So, while basic activities should function
correctly in most cases, particular behaviours may differ from server to
server.
Some servers, for example, will mark all of your messages as read
whenever you connect to the server, regardless of whether or not you
download any of them! When a message is downloaded, it is marked as
read by other servers. Some servers don’t even mark messages as read. The
standard itself appears to presume the latter, but neither side is certain. As
you read this chapter, keep these distinctions in mind.
Figure 14-1 depicts a very basic Python-driven POP discussion.

Authenticating and connecting
POP accepts a variety of authentication mechanisms. Basic username-
password authentication and APOP, an optional enhancement to POP that
helps protect passwords from being delivered in plain text if you’re using
an old POP server that doesn’t support SSL, are the two most prevalent.

In Python, connecting to and authenticating with a remote server looks like
this:

1. Make a POP3 SSL object, or simply a standard POP3 object, and give
it the remote hostname and port.

2. To send the username and password, use the user() and pass_()
functions. Keep an eye out for the underscore in pass_()! It’s there
because pass is a Python keyword that can’t be used as a method
name.

3. If the exception poplib.error proto is thrown, the login attempt failed,
and the string value of the exception contains the server’s error
message.

The difference between POP3 and POP3 SSL is determined by whether
your e-mail provider allows—or even requires—you to connect over an
encrypted connection in this day and age. More information regarding SSL
may be found in Chapter 6, although the general rule should be to utilise it
whenever possible. The methods in Listing 14-1 are used to log in to a
remote POP server. It connects to the server and calls stat(), which returns a
basic tuple with the number of messages in the mailbox and their total size.
Finally, the software uses quit() to terminate the POP connection.

THE POP-3 PROTOCOL

Purpose: Allow download of e-mail from inbox

Standard: RFC 1939 (May 1996)

Runs atop: TCP/IP

Default port: 110 (cleartext), 995 (SSL)

Libraries: poplib

Listing 14-1. A POP Session That Is Extremely Easy
#!/usr/bin/env python3
Programming in Python: The Basics.
import getpass, poplib, sys
def main():

if len(sys.argv) != 3:
print(‘usage: %s hostname username’ % sys.argv[0])
exit(2)

hostname, username = sys.argv[1:]
passwd = getpass.getpass()
p = poplib.POP3_SSL(hostname) # or “POP3” if SSL is not
supported

try:
p.user(username)
p.pass_(passwd)

except poplib.error_proto as e:
print(“Login failed:”, e)

else:
status = p.stat()
print(“You have %d messages totaling %d bytes” % status)

finally:
p.quit()

if __name__ == ‘__main__’:
main()

Despite the fact that this application makes no changes to messages, certain
POP servers will change mailbox flags merely because you connected. If
you run the examples in this chapter against a live mailbox, you can lose
track of which messages are read, unread, new, or old. Unfortunately, that
behaviour is server-dependent, and POP clients have no control over it. I
strongly advise you to test these examples on a test mailbox instead of your
own inbox!
The hostname of your POP server and your username are required
command-line inputs for this software. Contact your Internet provider or
network administrator if you don’t know this information. It’s worth noting
that your username on some services will be a simple string (like guido),
while on others it will be your entire e-mail address (guido@example.com).
After that, the software will ask you for your password. Finally, it will show
the state of your mailbox without affecting or altering any of your
messages.
Here’s how you can use the Mininet playground, which you can get from
the book’s source repository (see Chapter 1), to run the programme:
$ python3 popconn.py mail.example.com bpbonline
Password: abc12345
You have 3 messages totaling 5660 bytes

If you see something similar to this, your first POP chat was a success!
When POP servers don’t offer SSL to protect your connection from
snooping, they may at least support APOP, which employs a challenge–
response mechanism to ensure that your password isn’t sent in plain.
(However, any third party watching packets will be able to see all of your e-
mail!) This is made very simple by the Python Standard Library: Simply
call the apop() method, and if the POP server to which you’re
communicating doesn’t understand, fall back to basic authentication.
You might use a stanza like the one shown in Listing 14-2 inside the POP
programme to use APOP but fall back to simple authentication.

Listing 14-2. Falling Back After Attempting APOP
print(“Attempting APOP authentication...”)

try:

p.apop(user, passwd)

except poplib.error_proto:

print(“Attempting standard authentication...”)

try:

p.user(user)

p.pass_(passwd)

except poplib.error_proto as e:

print(“Login failed:”, e)

sys.exit(1)

Some older POP servers may lock the mailbox as soon as a login is
successful, regardless of the method. If the mailbox is locked, no changes
can be made to it, and no additional e-mail can be delivered until the lock is
removed. The issue is that some POP servers do not properly detect
problems, and if your connection hangs up without you dialling quit, they
will leave your box locked indefinitely (). The world’s most popular POP
server used to be in this category! As a result, whenever you finish a POP
session, you must always call quit() in your Python apps. You’ll notice that
all of the programme listings here are cautious to call stop() in a finally
block, ensuring that Python executes last.

Getting Access to Mailbox Information

The stat() function returned the number of messages in the mailbox and
their total size in the prior example.
list(), which offers more specific information about each message, is
another handy POP command.
The message number, which is required to retrieve communications later, is
the most interesting portion. There may be gaps in message numbers; for
example, a mailbox may only hold messages 1, 2, 5, 6, and 9 at any given
time. Additionally, the number allocated to a particular message may vary
depending on which POP server connection you use.
The list() command is used in Listing 14-3 to display information about
each message.

Listing 14-3. Using the command POP list()
#!/usr/bin/env python3
Programming in Python: The Basics.
import getpass, poplib, sys
def main():

if len(sys.argv) != 3:
print(‘usage: %s hostname username’ % sys.argv[0])
exit(2)

hostname, username = sys.argv[1:]
passwd = getpass.getpass()
p = poplib.POP3_SSL(hostname)
try:
p.user(username)
p.pass_(passwd)

except poplib.error_proto as e:
print(“Login failed:”, e)

else:
response, listings, octet_count = p.list()
if not listings:
print(“No messages”)

for listing in listings:
number, size = listing.decode(‘ascii’).split()
print(“Message %s has %s bytes” % (number, size))

finally:

p.quit()
if __name__ == ‘__main__’:

main()

The list() function returns three elements in a tuple. In general, you should
pay attention to the second item. Here is the current raw output for one of
my POP mailboxes, which has three messages:
(‘+OK 3 messages (5676 bytes)’, [‘1 2405’, ‘2 1625’, ‘3
1664’], 25)

For each of the three items in my inbox, the three strings inside the second
item provide the message number and size. Listing 14-3 uses simple parsing
to deliver the output in a more appealing style. Here’s how you’d go about
running it against the POP server in the book’s network playground (see
Chapter 1):
$ python3 mailbox.py mail.example.com bpbonline
Password: abc12345
Message 1 has 355 bytes
Message 2 has 446 bytes
Message 3 has 1183 bytes

Messages are downloaded and deleted.
You should now have a good understanding of POP: when you use poplib,
you send short atomic commands that always return a tuple, which contains
various strings and lists of strings that display the results. You’re now
capable of manipulating messages! The three relevant methods, which all
use the identical integer identifiers returned by list() to identify messages,
are as follows:

retr(num): This function downloads a single message and returns a
tuple with a result code and the message as a list of lines. Most POP
servers will set the message’s “seen” flag to “true,” preventing you
from reading it again over POP (unless you have another method into
your mailbox that allows you to set messages back to “Unread”).
top(num, body lines): This method provides the same result as retr()
but does not mark the message as “seen.” Instead of delivering the
entire message, it only returns the headers and the number of body

lines you specify in body lines. If you want to allow the user choose
which messages to download, this is great for previewing messages.
dele(num): This method marks a message for deletion from the POP
server, which will happen when this POP session ends. Because you
will never be able to retrieve the message from the server again, you
should only do this if the user explicitly requests irreversible
destruction of the message or if you have stored the message to
redundant storage (and possibly backed it up) and have used
something like fsync() to ensure that the data have been written.

To put it all together, look at Listing 14-4, which is a fairly useful POP-
compatible e-mail client. It examines your inbox to see how many messages
you have and to learn their numbers; it then uses top() to show you a
preview of each item; and, at the user’s request, it can retrieve the entire
message and delete it from the mailbox.

Listing 14-4. A POP E-mail Reader that’s Easy to Use
#!/usr/bin/env python3
Programming in Python: The Basics.
import email, getpass, poplib, sys
def main():

if len(sys.argv) != 3:
print(‘usage: %s hostname username’ % sys.argv[0])
exit(2)

hostname, username = sys.argv[1:]
passwd = getpass.getpass()
p = poplib.POP3_SSL(hostname)
try:
p.user(username)
p.pass_(passwd)

except poplib.error_proto as e:
print(“Login failed:”, e)

else:
visit_all_listings(p)

finally:
p.quit()

def visit_all_listings(p):

response, listings, octets = p.list()
for listing in listings:
visit_listing(p, listing)

def visit_listing(p, listing):
number, size = listing.decode(‘ascii’).split()
print(‘Message’, number, ‘(size is’, size, ‘bytes):’)
print()
response, lines, octets = p.top(number, 0)
document = ‘\n’.join(line.decode(‘ascii’) for line in lines
)
message = email.message_from_string(document)
for header in ‘From’, ‘To’, ‘Subject’, ‘Date’:
if header in message:
print(header + ‘:’, message[header])

print()
print(‘Read this message [ny]?’)
answer = input()
if answer.lower().startswith(‘y’):
response, lines, octets = p.retr(number)
document = ‘\n’.join(line.decode(‘ascii’) for line in
lines)
message = email.message_from_string(document)
print(‘-’ * 72)
for part in message.walk():

if part.get_content_type() == ‘text/plain’:
print(part.get_payload())
print(‘-’ * 72)
print()
print(‘Delete this message [ny]?’)
answer = input()
if answer.lower().startswith(‘y’):
p.dele(number)
print(‘Deleted.’)

if __name__ == ‘__main__’:
main()

You’ll see that the listing makes extensive use of the email module, which
was introduced in Chapter 12, because even fancy modern MIME e-mails

with HTML and graphics typically include a text/plain component that the
email module can handle. extract for the purpose of printing to the screen
with a simple programme like this If you run this programme in the book’s
network playground (see Chapter 1), you’ll get results that look like the
ones below following:
$ python3 download-and-delete.py mail.example.com bpbonline
password: abc12345
Message 1 (size is 356 bytes):
From: Administrator <admin@mail.example.com>
To: Bpbonline <bpbonline@mail.example.com>
Subject: Welcome to example.com!
Read this message [ny]? y
--

We are happy that you have chosen to use example.com’s
industry-leading
Internet e-mail service and we hope that you experience is a
pleasant
one. If you ever need your password reset, simply contact our
staff!
- example.com
--

Delete this message [ny]? y
Deleted.

Conclusion
POP allows you to easily download e-mail messages from a remote server.
You may get information about the number of messages in a mailbox and
the size of each message using Python’s poplib interface. Individual
messages can also be retrieved or deleted by number.
A mailbox may be locked if you connect to a POP server. As a result, it’s
critical to keep POP sessions as brief as possible and to always execute
quit() when you’re finished.
To protect your passwords and the contents of your e-mail messages, POP
should be used with SSL wherever available.

If SSL isn’t available, at the very least, use APOP; only send your password
in the clear if you really must use POP and none of the other alternatives
will suffice. POP is a basic and widely used protocol, but it has certain
flaws that make it inappropriate for specific purposes. It can only access
one folder, for example, and individual messages are not tracked
indefinitely.
The following chapter looks into IMAP, a protocol that combines the
benefits of POP with a few additional ones.

CHAPTER 15
Internet Message Access Protocol

(IMAP)
The Internet Message Access Protocol (IMAP) appears to be similar to the
POP protocol discussed in Chapter 14.
Furthermore, if you read the first sections of Chapter 13, which provide you
a complete picture of how e-mail moves via the Internet, you’ll notice that
the two protocols serve the same purpose: POP and IMAP are two methods
for connecting a laptop or desktop computer to a remote Internet server in
order to view and manipulate e-mail.
That’s where the similarity ends. Unlike POP, which only allows users to
download new messages to their computers, the IMAP protocol has so
many features that many users sort and archive their e-mail on the server
permanently, keeping it secure from a laptop or desktop hard drive
catastrophe.
IMAP has various advantages over POP, including:

Mail can be organised into multiple folders rather than arriving in a
single inbox;
Flags such as “read,” “replied,” “seen,” and “deleted” are supported
for each message.
Messages may be scanned on theserver for text strings without having
to download each one individually.
A locally stored message can be easily uploaded to one of the remote
folders;
Persistent unique message numbers are maintained, allowing for
reliable synchronisation between a local message storage and the
messages saved on the server.
Users can share folders with others or make them read-only.

Some IMAP servers can display non-mail sources, such as Usenet
newsgroups, as e-mail folders.
An IMAP client can selectively download a portion of a message, such
as a specific attachment or just the message headers, without having to
wait for the rest of the message to download.

Taken combined, these features indicate that IMAP can perform far more
tasks than POP’s limited download-and-delete functionality. Many email
clients, such as Thunderbird and Outlook, can display IMAP folders and
use them in the same way that locally stored folders do. Instead of
downloading all of the messages in advance, when a user clicks a message,
the e-mail reader downloads it from the IMAP server and displays it; the
reader can also set the message’s “read” flag at the same time.

THE IMAP PROTOCOL

Purpose: Read, arrange, and delete E-mail from E-mail folders

Standard: RFC 3501 (2003)

Runs atop: TCP/IP

Default port: 143 (cleartext), 993 (SSL)

Library: imaplib, IMAPClient

Exceptions: socket.error, socket.gaierror, IMAP4.error,

IMAP4.abort, IMAP4.readonly

IMAP clients can synchronise with an IMAP server as well. An IMAP
folder may be downloaded to a laptop by someone prepared to go on a
business trip. The user’s e-mail programme would then record these actions
if e-mail was viewed, deleted, or replied to while on the road. When the
laptop reconnects to the network, their e-mail client can mark messages on
the server with the same “read” or “replied” marks that they have locally,
and it can also delete messages from the server that have already been
erased locally, so the user does not see them again.
As a result, one of IMAP’s main advantages over POP is that users may
access the same e-mail from all of their laptop and desktop computers in the
same state. POP users can only see the same e-mail multiple times (if they
tell their e-mail clients to leave e-mail on the server), or each message will

be downloaded only once to the machine on which they happen to read it (if
the e-mail clients delete the mail), resulting in their e-mail being scattered
across all of the machines from which they check it. IMAP users are not
faced with this problem.
Of course, IMAP may be used in the same way that POP can—to download
mail, store it locally, and so on. For those who don’t want or need the
sophisticated features, you can delete the messages from the server right
away.
The IMAP protocol is available in various different versions. IMAP4rev1 is
the most recent and, by far, the most popular. In reality, the term “IMAP”
has become synonymous with IMAP4rev1 in recent years. All IMAP
servers are assumed to be IMAP4rev1 servers in this chapter. Some of the
capabilities covered in this chapter may not be supported by very old IMAP
servers, which are quite uncommon.
At the following links, you may get a decent how-to guide on writing an
IMAP client:
www.dovecot.org/imap-client-coding-howto.html
www.imapwiki.org/ClientImplementation

If you’re doing anything more than writing a small, single-purpose client to
summarise your inbox or automatically download attachments, you should
thoroughly read the information at the preceding resources—or read a book
on IMAP if you want a more comprehensive reference—so that you can
correctly handle all of the situations you might encounter with different
servers and their implementations of IMAP.

Structure:
IMAP in Python: An Overview
IMAPClient
Folder Inspection
UIDs vs. Message Numbers
Message Intervals
Information in Brief
Obtaining a Complete Mailbox

Individual Message Downloading
Messages Can Be Flagged and Deleted
Messages Can Be Deleted
Searching
Folders and Messages Manipulation
Asynchrony
Conclusion

Objectives:
This chapter will only cover the fundamentals, with an emphasis on how to
connect from Python.

IMAP in Python: An Overview
IMAP client interface imaplib is included in the Python Standard Library
and provides rudimentary access to the protocol. Unfortunately, it is limited
to understanding how to send requests and receive responses from them. It
makes no attempt to implement the IMAP specification’s explicit
requirements for parsing the returned data. Take a look at Listing 15-1 to
see how the values given by imaplib are usually too raw to be helpful in a
programme. It’s a simple script that connects to an IMAP account with
imaplib, lists the “capabilities” advertised by the server, then displays the
status code and data returned by the LIST command.

Listing 15-1. IMAP Connection and Folder Listing
#!/usr/bin/env python3
Programming in Python: The Basics.
Opening an IMAP connection with the pitiful Python Standard
Library
import getpass, imaplib, sys
def main():

if len(sys.argv) != 3:
print(‘usage: %s hostname username’ % sys.argv[0])
sys.exit(2)

hostname, username = sys.argv[1:]

m = imaplib.IMAP4_SSL(hostname)
m.login(username, getpass.getpass())
try:
print(‘Capabilities:’, m.capabilities)
print(‘Listing mailboxes ‘)
status, data = m.list()
print(‘Status:’, repr(status))
print(‘Data:’)
for datum in data:

print(repr(datum))
finally:
m.logout()

if __name__ == ‘__main__’:
main()

When you execute this script with the correct arguments, it will prompt you
for your password; IMAP authentication is nearly always done with a
username and password:
open imaplib.py $ python imap.example.com
bpbonline@example.com
Password:

If your password is accurate, it will display a response similar to the results
in Listing 15-2. You’ll notice the “capabilities” section first, which shows
the IMAP features that this server supports. And, I must confess, the list’s
format is extremely Pythonic: Whatever shape the list took on the wire has
been transformed into a lovely tuple of strings.

Listing 15-2. The following is an example of the previous listing’s output.
Capabilities: (‘IMAP4REV1’, ‘UNSELECT’, ‘IDLE’, ‘NAMESPACE’,
‘QUOTA’,
‘XLIST’, ‘CHILDREN’, ‘XYZZY’, ‘SASL-IR’, ‘AUTH=XOAUTH’)

Listing mailboxes
Status: ‘OK’
Data:
b’(\\HasNoChildren) “/” “INBOX”’
b’(\\HasNoChildren) “/” “Personal”’
b’(\\HasNoChildren) “/” “Receipts”’
b’(\\HasNoChildren) “/” “Travel”’

b’(\\HasNoChildren) “/” “Work”’
b’(\\Noselect \\HasChildren) “/” “[Gmail]”’
b’(\\HasChildren \\HasNoChildren) “/” “[Gmail]/All Mail”’
b’(\\HasNoChildren) “/” “[Gmail]/Drafts”’
b’(\\HasChildren \\HasNoChildren) “/” “[Gmail]/Sent Mail”’
b’(\\HasNoChildren) “/” “[Gmail]/Spam”’
b’(\\HasNoChildren) “/” “[Gmail]/Starred”’
b’(\\HasChildren \\HasNoChildren) “/” “[Gmail]/Trash”’

When it comes to the list() method’s output, though, everything start to fall
apart. First, the status code will be returned as the plain string ‘OK,’ so code
that uses imaplib will have to constantly check if the code is ‘OK,’ or
whether it indicates an error. This isn’t really Pythonic, because Python
programmes may normally run without error checking, safe in the
knowledge that if something goes wrong, an exception will be fired.
Second, imaplib offers no assistance in deciphering the results! This IMAP
account’s list of e-mail folders employs a variety of protocol-specific
quoting: Each item in the list refers to the flags that have been placed on
each folder. The character used to separate folders and subfolders (in this
case, the slash character) is then specified, followed by the folder’s quoted
name. However, all of this is transformed back into raw data, forcing you to
decipher strings like the ones below:
“/” “[Gmail]/Sent Mail” (\HasChildren\HasNoChildren)

Third, the result is a jumble of distinct sequences: the flags are still
uninterpreted byte strings, but each delimiter and folder name has been
converted to an actual Unicode string.
You’ll need a more sophisticated IMAP client library unless you wish to
implement various elements of the protocol yourself.

IMAPClient
Fortunately, there is a popular and well-tested IMAP library for Python that
can be easily installed through the Python Package Index. The IMAPClient
package was written by Menno Smits, a friendly Python programmer, and it
makes use of the Python Standard Library imaplib behind the scenes.
Install IMAPClient in a “virtualenv,” as stated in Chapter 1, to get a feel for
it. Once installed, you may run the programme using the python interpreter

in the virtual environment, as illustrated in Listing 15-3.

Listing 15-3. With IMAPClient, you may list IMAP folders.
#!/usr/bin/env python3
Programming in Python: The Basics.
Opening an IMAP connection with the powerful IMAPClient
import getpass, sys
from imapclient import IMAPClient
def main():

if len(sys.argv) != 3:
print(‘usage: %s hostname username’ % sys.argv[0])
sys.exit(2)

hostname, username = sys.argv[1:]
c = IMAPClient(hostname, ssl=True)
try:
c.login(username, getpass.getpass())

except c.Error as e:
print(‘Could not log in:’, e)

else:
print(‘Capabilities:’, c.capabilities())
print(‘Listing mailboxes:’)
data = c.list_folders()
for flags, delimiter, folder_name in data:

print(‘ %-30s%s %s’ % (‘ ‘.join(flags), delimiter,
folder_name))
finally:
c.logout()

if __name__ == ‘__main__’:
main()

More specifics of the protocol exchange are now being handled on your
behalf, as you can see from the code. For example, instead of receiving a
status code that you must check every time you run a command, the library
now does the check for you and raises an exception to stop you in your
tracks if something goes wrong. A interaction between Python and an
IMAP server is shown in Figure 15-1.
Second, each result from the LIST command—which is available in our
library as the list folders() method rather than the list() method provided by

imaplib—has already been parsed into Python data types. Each line of data
is returned as a tuple, containing the folder flags, folder name delimiter, and
folder name, with the flags themselves being a string sequence.
Take a look at Listing 15-4 to see what this second script produces.

Listing 15-4. Flags and Folder Names That Are Correctly Parsed
Capabilities: (‘IMAP4REV1’, ‘UNSELECT’, ‘IDLE’, ‘NAMESPACE’,
‘QUOTA’, ‘XLIST’, ‘CHILDREN’, ‘XYZZY’,
‘SASL-IR’, ‘AUTH=XOAUTH’)
Listing mailboxes:
\HasNoChildren / INBOX
\HasNoChildren / Personal
\HasNoChildren / Receipts
\HasNoChildren / Travel
\HasNoChildren / Work
\Noselect \HasChildren / [Gmail]
\HasChildren \HasNoChildren / [Gmail]/All Mail
\HasNoChildren / [Gmail]/Drafts
\HasChildren \HasNoChildren / [Gmail]/Sent Mail
\HasNoChildren / [Gmail]/Spam
\HasNoChildren / [Gmail]/Starred
\HasChildren \HasNoChildren / [Gmail]/Trash

Each folder’s standard flags may include one or more of the following:

Noinferiors: This indicates that the folder contains no subfolders and
will not be able to contain subfolders in the future. If you try to create
a subfolder within this folder with your IMAP client, you’ll get an
error.
Noselect: This indicates that select folder() cannot be used on this
folder; in other words, this folder does not and cannot contain any
messages. (One hypothesis is that it exists solely to allow subfolders
beneath it.)
Marked: This indicates that the server thinks this box is noteworthy
in some way. This usually means that new messages have been
delivered since the folder was last selected. However, the absence of
Marked does not rule out the possibility of new messages in the folder;
some servers simply do not support Marked.

Unmarked: This ensures that the folder is free of fresh
communications.

Additional flags not covered by the standard are returned by some servers.
Those additional flags must be accepted and ignored by your code.

Folder Inspection
You must first “choose” a folder to look at before you may download,
search, or alter any messages. This means that the IMAP protocol is
stateful: it remembers which folder you’re looking at right now, and its
instructions work on that folder without requiring you to repeat its name.
Only after you disconnect and rejoin will you be able to start over with a
clean slate. This can make interaction more pleasant, but it also means that
your software must keep track of which folder is selected at all times,
otherwise it may end up doing anything to the wrong folder. When you pick
a folder, you’re telling the IMAP server that all subsequent instructions will
apply to that folder until you change folders or exit the current one.
By specifying the readonly=True argument, you can pick the folder in
“read-only” mode rather than full read/write mode when selecting. If you
attempt any procedures that will delete or edit messages, you will receive an
error message. The fact that you are only reading can be used by the server
to optimise access to the folder, in addition to preventing you from making
any mistakes when you wish to keep all of the messages intact.
(For example, while you have it chosen, it may read-lock but not write-lock
the real folder storage on disc.)

UIDs vs. Message Numbers
IMAP allows you to refer to a specific message within a folder using one of
two methods: a temporary message number (usually 1, 2, 3, and so on) or a
unique identifier (UID). The difference between the two is that one is more
persistent than the other. When you select a folder over a certain
connection, message numbers are assigned. This means they can be
attractive and sequential, but it also implies that a given message’s number
may change if you return to the same folder later. This behaviour (which is
the same as POP) is fine for programmes like live e-mail readers or basic

download scripts; you won’t mind if the numbers change the next time you
connect. A UID, on the other hand, is designed to stay the same even if you
disconnect from the server and do not reconnect. If a message has the UID
1053 today, it will have the same UID tomorrow, and no other messages in
that folder will ever have the UID 1053. This behaviour is quite beneficial
if you’re creating a synchronisation tool!
It will allow you to verify that actions are being conducted in accordance
with the proper message with 100 percent certainty. This is one of the
reasons why IMAP is so much more enjoyable to use than POP.
It’s worth noting that if you return to an IMAP account and the user has
changed their password without telling you, If you delete a folder and then
create a new one with the same name, your software may think it’s the same
folder, but the UID numbers are incompatible and no longer agree. If you
don’t notice a folder rename, you can lose track of which messages in your
IMAP account correspond to which messages you’ve already downloaded.
But it turns out that IMAP is prepared to protect you from this, and (as I’ll
describe later) includes a UIDVALIDITY folder characteristic that you can
use to compare UIDs in the folder from one session to the next to determine
if they match the UIDs that the same messages had when you last
connected. Message numbers or UIDs can be used in most IMAP
procedures that operate with specific messages. IMAPClient normally
utilises UIDs and ignores the IMAP-assigned temporary message numbers.
If you wish to see the temporary numbers instead, just provide the use
uid=False option when instantiating IMAPClient, or set the use uid attribute
of the class to False and True on the fly during your IMAP session.

Message Intervals
The majority of IMAP commands that deal with messages can handle one
or more messages. If you need to process a large number of messages, this
can save you a lot of time. You can operate on a group of messages as a
whole instead of providing separate commands and obtaining separate
answers for each individual message. Because you don’t have to deal with a
network roundtrip for each command, this is frequently faster.
Instead of providing a message number, you can provide a comma-
separated list of message numbers. You can also use a colon to separate the

start and end message numbers if you want all messages whose numbers are
in a range but don’t want to list all of their numbers (or if you don’t know
their numbers—for example, “everything starting with message one”
without having to fetch their numbers first). “And all of the rest of the
communications,” an asterisk denotes. The following is an example of a
specification:
2,4:6,20:

* It refers to “message 2,” “messages 4 through 6,” and “message 20
through the mail folder’s conclusion.”

Information in Brief
When you initially select a folder, the IMAP server displays some summary
information about it, including information about the folder and its
messages.
IMAPClient returns the summary as a dictionary. When you call select
folder() on most IMAP servers, you’ll get the following keys:

EXISTS: An integer indicating how many messages are in the folder.
FLAGS: This section contains a list of the flags that can be applied to
messages in this folder.
RECENT: Specifies the server’s estimate of the number of messages
that have appeared in the folder since an IMAP client called select
folder() on it the last time.
PERMANENTFLAGS: This property specifies a list of custom flags
that can be put on messages; it is generally empty.
UIDNEXT: the server’s best prediction for the UID allocated to the
next incoming (or uploaded) message.
UIDVALIDITY: A string that clients can use to confirm that the UID
numbering hasn’t changed. If you return to a folder and this value is
different from the last time you connected, the UID number has reset
and your previously stored UID values are no longer valid.
UNSEEN: The message number of the folder’s first unseen message
(the one without the Seen flag).

Servers are only needed to return FLAGS, EXISTS, and RECENT of these
flags, though most will provide UIDVALIDITY as well. A sample
programme that reads and displays the summary information from my
INBOX e-mail folder is shown in Listing 15-5.

Listing 15-5. Information from a Folder’s Summary
#!/usr/bin/env python3

Programming in Python: The Basics.

Opening an IMAP connection with IMAPClient and listing

folder information.

import getpass, sys

from imapclient import IMAPClient

def main():

if len(sys.argv) != 4:

print(‘usage: %s hostname username foldername’ %

sys.argv[0])

sys.exit(2)

hostname, username, foldername = sys.argv[1:]

c = IMAPClient(hostname, ssl=True)

try:

c.login(username, getpass.getpass())

except c.Error as e:

print(‘Could not log in:’, e)

else:

select_dict = c.select_folder(foldername, readonly=True)

for k, v in sorted(select_dict.items()):

print(‘%s: %r’ % (k, v))

finally:

c.logout()

if __name__ == ‘__main__’:

main()

When run, this program displays results such as this:
$./folder_info.py imap.example.com bpbonline@example.com

Password:

EXISTS: 3

PERMANENTFLAGS: (‘\\Answered’, ‘\\Flagged’, ‘\\Draft’,

‘\\Deleted’,

‘\\Seen’, ‘*’)

READ-WRITE: True

UIDNEXT: 2626

FLAGS: (‘\\Answered’, ‘\\Flagged’, ‘\\Draft’, ‘\\Deleted’,

‘\\Seen’)

UIDVALIDITY: 1

RECENT: 0

This reveals that I have three mails in my INBOX folder, none of which
have arrived since my last check. Remember to compare the
UIDVALIDITY to a stored value from a prior session if your software
wants to use UIDs it saved from earlier sessions.

Obtaining a Complete Mailbox
To download mail with IMAP, utilise the FETCH command, which an
IMAPClient exposes via its fetch() method.
The most straightforward method is to download all messages at once in
one huge mouthful. Although this is the simplest and uses the least amount
of network bandwidth (since you don’t have to give and receive many
orders), numerous responses), it does mean that your application will have
to store all of the returned messages in memory simultaneously. investigates
them This is clearly not viable for very large mailboxes with a lot of
attachments in their messages!
Listing 15-6 uses a Python data structure to download all of the messages
from the INBOX folder into your computer’s memory. After that, it shows a
bit of summary information for each one.

Listing 15-6. All Messages in a Folder are Downloaded
#!/usr/bin/env python3
Programming in Python: The Basics.
Opening an IMAP connection with IMAPClient and retrieving
mailbox messages.
import email, getpass, sys
from imapclient import IMAPClient
def main():

if len(sys.argv) != 4:

print(‘usage: %s hostname username foldername’ %
sys.argv[0])
sys.exit(2)

hostname, username, foldername = sys.argv[1:]
c = IMAPClient(hostname, ssl=True)
try:
c.login(username, getpass.getpass())

except c.Error as e:
print(‘Could not log in:’, e)

else:
print_summary(c, foldername)

finally:
c.logout()

def print_summary(c, foldername):
c.select_folder(foldername, readonly=True)
msgdict = c.fetch(‘1:*’, [‘BODY.PEEK[]’])
for message_id, message in list(msgdict.items()):
e = email.message_from_string(message[‘BODY[]’])
print(message_id, e[‘From’])
payload = e.get_payload()
if isinstance(payload, list):
part_content_types = [part.get_content_type() for part in
payload]
print(‘ Parts:’, ‘ ‘.join(part_content_types))

else:
print(‘ ‘, ‘ ‘.join(payload[:60].split()), ‘...’)

if __name__ == ‘__main__’:
main()

Remember that IMAP is stateful: you must first use select folder() to
position yourself “within” the provided folder before using fetch() to
request message content. (If you wish to leave and not be within a certain
folder any longer, call close folder() later.) Because message IDs, whether
temporary or UIDs, are always positive integers, the range ‘1:*’ indicates
“the first message to the end of the mail folder.”
The strange-looking string ‘BODY.PEEK[]’ is used to ask IMAP for the
message’s “full body.” The string ‘BODY[]’ implies “the entire message”;
as you’ll see, you can also ask for select parts of a message inside the

square brackets. PEEK indicates that you are only looking inside the
message to generate a summary, and that you do not want the server to
automatically put the Seen flag on all of these messages for you, causing
the server’s memory of which messages the user has read to be ruined. (I
didn’t want to label all of your messages as read, so this seemed like a
wonderful feature for me to add to a small script like this that you might run
against a real mailbox!)
The dictionary that is returned maps message UIDs to dictionaries with
message information. You look in each message dictionary for the
‘BODY[]’ entry that IMAP has filled in with the information about the
message for which you asked: its whole text, returned as a big string, as you
cycle through its keys and values.
The script asks Python to grab the From: line and a portion of the message’s
content and output them to the screen as a summary, using the email
module that I covered in Chapter 12. If you wanted to adapt this script to
save the messages in a file or database instead, you could just skip the email
parsing phase and treat the message body as a single string to be stored and
parsed later.
The following are the outcomes of this script:
$./mailbox_summary.py imap.example.com john INBOX
Password:
2592 “Amazon.com” <order-update@amazon.com>
Dear john, Portable Power Systems, Inc. shipped the follo ...

2470 Meetup Reminder <info@meetup.com>
Parts: text/plain text/html

2472 billing@linode.com
Thank you. Please note that charges will appear as “Linode.c
...

Of course, if the messages contained enormous attachments, downloading
them in their whole merely to print a summary may be disastrous;
nonetheless, given this is the simplest message-fetching function, I though
it would be a good place to start!

Individual Message Downloading

E-mail messages, like e-mail folders, can be fairly large—many e-mail
systems allow users to have hundreds or thousands of messages, each of
which can be 10MB or larger. If the contents of that mailbox are all
downloaded at once, as in the previous example, the client machine’s RAM
will quickly be exhausted.
IMAP offers numerous operations in addition to the standard “get the
complete message” command covered in the preceding section to enable
network-based e-mail clients that don’t wish to store local copies of every
message.

The headers of an e-mail can be retrieved separately from the message
as a block of text.
Specific headers from a message can be requested and returned
without having to download the entire message.
The server can be instructed to recursively examine and return an
outline of a message’s MIME structure, as well as the text of specific
sections of the message.

This enables IMAP clients to do very efficient queries, downloading only
the data they need to present to the user, reducing the burden on the IMAP
server and network and allowing results to be displayed to the user more
rapidly.
Examine Listing 15-7, which combines a variety of notions about accessing
an IMAP account to show how a simple IMAP client works. At this stage in
the chapter, this should provide more context than if these characteristics
were spread out among a half-dozen shorter programme listings! The client
is made up of three circular loops that each receive input from users when
they examine a list of e-mail folders, then a list of messages within a given
e-mail folder, and finally the sections of a specific message.

Listing 15-7. IMAP Client (Simple)
#!/usr/bin/env python3

Programming in Python: The Basics.

Letting a user browse folders, messages, and message parts.

import getpass, sys

from imapclient import IMAPClient

banner = ‘-’ * 72

def main():

if len(sys.argv) != 3:

print(‘usage: %s hostname username’ % sys.argv[0])

sys.exit(2)

hostname, username = sys.argv[1:]

c = IMAPClient(hostname, ssl=True)

try:

c.login(username, getpass.getpass())

except c.Error as e:

print(‘Could not log in:’, e)

else:

explore_account(c)

finally:

c.logout()

def explore_account(c):

“””Display the folders in this IMAP account and let the user

choose one.”””

while True:

print()

folderflags = {}

data = c.list_folders()

for flags, delimiter, name in data:

folderflags[name] = flags

for name in sorted(folderflags.keys()):

print(‘%-30s %s’ % (name, ‘ ‘.join(folderflags[name])))

print()

reply = input(‘Type a folder name, or “q” to quit:

‘).strip()

if reply.lower().startswith(‘q’):

break

if reply in folderflags:

explore_folder(c, reply)

else:

print(‘Error: no folder named’, repr(reply))

def explore_folder(c, name):

“””List the messages in folder `name` and let the user

choose one.”””

while True:

c.select_folder(name, readonly=True)

msgdict = c.fetch(‘1:*’, [‘BODY.PEEK[HEADER.FIELDS (FROM

SUBJECT)]’,

‘FLAGS’, ‘INTERNALDATE’, ‘RFC822.SIZE’])

print()

for uid in sorted(msgdict):

items = msgdict[uid]

print(‘%6d %20s %6d bytes %s’ % (

uid, items[‘INTERNALDATE’], items[‘RFC822.SIZE’],

‘ ‘.join(items[‘FLAGS’])))

for i in items[‘BODY[HEADER.FIELDS (FROM

SUBJECT)]’].splitlines():

print(‘ ‘ * 6, i.strip())

reply = input(‘Folder %s - type a message UID, or “q” to

quit: ‘

% name).strip()

if reply.lower().startswith(‘q’):

break

try:

reply = int(reply)

except ValueError:

print(‘Please type an integer or “q” to quit’)

else:

if reply in msgdict:

explore_message(c, reply)

c.close_folder()

def explore_message(c, uid):

“””Let the user view various parts of a given message.”””

msgdict = c.fetch(uid, [‘BODYSTRUCTURE’, ‘FLAGS’])

while True:

print()

print(‘Flags:’, end=’ ‘)

flaglist = msgdict[uid][‘FLAGS’]

if flaglist:

print(‘ ‘.join(flaglist))

else:

print(‘none’)

print(‘Structure:’)

display_structure(msgdict[uid][‘BODYSTRUCTURE’])

print()

reply = input(‘Message %s - type a part name, or “q” to

quit: ‘

% uid).strip()

print()

if reply.lower().startswith(‘q’):

break

key = ‘BODY[%s]’ % reply

try:

msgdict2 = c.fetch(uid, [key])

except c._imap.error:

print(‘Error - cannot fetch section %r’ % reply)

else:

content = msgdict2[uid][key]

if content:

print(banner)

print(content.strip())

print(banner)

else:

print(‘(No such section)’)

def display_structure(structure, parentparts=[]):

“””Attractively display a given message structure.”””

The whole body of the message is named ‘TEXT’.

if parentparts:

name = ‘.’.join(parentparts)

else:

print(‘ HEADER’)

name = ‘TEXT’

Print a simple, non-multipart MIME part. Include its

disposition,

if available.

is_multipart = not isinstance(structure[0], str)

if not is_multipart:

parttype = (‘%s/%s’ % structure[:2]).lower()

print(‘ %-9s’ % name, parttype, end=’ ‘)

if structure[6]:

print(‘size=%s’ % structure[6], end=’ ‘)

if structure[9]:

print(‘disposition=%s’ % structure[9][0],

‘ ‘.join(‘{}={}’.format(k, v) for k, v in structure[9][1:]),

end=’ ‘)

print()

return

For a multipart part, print all of its subordinate parts.

parttype = ‘multipart/%s’ % structure[1].lower()

print(‘ %-9s’ % name, parttype, end=’ ‘)

print()

subparts = structure[0]

for i in range(len(subparts)):

display_structure(subparts[i], parentparts + [str(i + 1)])

if __name__ == ‘__main__’:

main()

The outer function, like other of the programme listings previously covered,
uses a simple list folders() call to present the users with a list of e-mail
folders. The IMAP flags for each folder are also shown. This allows the
software to provide users a choice of folders:
INBOX \HasNoChildren
Receipts \HasNoChildren
Travel \HasNoChildren
Work \HasNoChildren
Type a folder name, or “q” to quit:

Things get more interesting after a user selects a folder: each message must
have a summary printed. Different e-mail clients make different decisions
about how much information about each message in a folder should be
displayed. In Listing 15-7, the code selects a few header fields, as well as
the message’s date and size. It’s worth noting that the word BODY is used
with caution. Because the IMAP server would otherwise mark the messages
as \Seen just because they were displayed in a summary, you should use
PEEK instead than BODY to retrieve these items. Once an e-mail folder has
been selected, the results of this retrieve() call are printed to the screen:
2704 2019-10-28 21:32:13 19129 bytes \Seen

From: John Jebaraj
Subject: Digested Articles

2705 2019-10-28 23:03:45 15354 bytes
Subject: Re: [venv] Building a virtual environment for
offline testing
From: “W. Angel Trader”

2706 2019-10-28 08:11:38 10694 bytes
Subject: Re: [venv] Building a virtual environment for
offline testing
From: Esther Lopes Tavares

Folder INBOX - type a message UID, or “q” to quit:

As you can see, the ability to pass several items of interest to the IMAP
fetch() function allows you to construct very complicated message
summaries with just one roundtrip to the server! Once the user has chosen a
message, fetch() is called to retrieve the BODYSTRUCTURE of the
message, which is the key to seeing a MIME message’s sections without
having to download the complete text. BODYSTRUCTURE just lists its
MIME sections as a recursive data structure, rather than requiring you to
download many megabytes over the network to list a large message’s
attachments.
A tuple of simple MIME components is returned:
(‘TEXT’, ‘PLAIN’, (‘CHARSET’, ‘US-ASCII’), None, None, ‘7BIT’,
2280, 46)

The following are the elements of this tuple, as detailed in section 7.4.2 of
RFC 3501 (beginning with item index zero, of course):

1. Type of MIME
2. Subtype of MIME
3. Body parameters, provided as a tuple (name, value, name, value,...),

with the name of each parameter followed by its value.
4. Content Identifier
5. Description of the content
6. Encoding of content
7. Byte size of the content

This offers the content length in lines for textual MIME types.

When the IMAP server detects that a message is multipart, or when it
checks one of the sections of the message that it discovers is multipart (for
more information on how MIME messages can nest other MIME messages
inside them, see Chapter 12), it sends the message to the recipient. The
tuple it gives will start with a list of substructures, each of which is a tuple
with the same layout as the outer structure. It will then conclude with some
information about the multipart container that connected those sections:
([(...), (...)], “MIXED”, (‘BOUNDARY’, ‘=-=-=’), None, None)

The parameter “MIXED” specifies the type of multipart container being
represented—in this case, multipart/mixed is the whole type. Aside from
“MIXED,” other popular “multipart” subtypes include “ALTERNATIVE,”
“DIGEST,” and “PARALLEL.” The other items beyond the multipart type
are optional, but if present, they offer a series of name-value parameters (in
this case, specifying the MIME multipart boundary string), the multipart’s
disposition, language, and location (typically given by a URL).
Given these rules, a recursive method like display structure() in Listing 15-
7 is ideal for unwinding and presenting a message’s hierarchy of parts.
When the IMAP server provides a BODYSTRUCTURE, the procedure gets
to work and prints something that looks like this for the user to examine:
Folder INBOX - type a message UID, or “q” to quit: 2701
Flags: \Seen
HEADER
TEXT multipart/mixed
1 multipart/alternative
1.1 text/plain size=253
1.2 text/html size=508
2 application/octet-stream size=5448 ATTACHMENT
FILENAME=’test.py’
Message 2701 - type a part name, or “q” to quit:

You can see that the message’s structure is typical of current e-mail, with a
sophisticated rich-text HTML component for users who see it in a browser
or modern e-mail client, and a plain-text version of the same message for
those who use more traditional devices or apps. It also includes a file
attachment with a suggested file name in case the user want to save it to
their local file system. For simplicity and safety, this sample software does
not attempt to store anything to the hard disc; instead, the user can select

any part of the message—for example, the special sections HEADER and
TEXT, or one of the specified parts like 1.1—and its content will be printed
to the screen. All of this is supported simply by calls to the IMAP fetch()
method, as you can see from the programme listing. HEADER and 1.1 are
simply more options for what you can specify when calling get(), and they
can be used alongside other values like BODY.PEEK and FLAGS. The only
distinction is that the latter values apply to all messages, whereas a part
name like 2.1.3 would only exist in multipart messages with that
designation in their structure.
One quirk you’ll notice is that the IMAP protocol doesn’t really provide
you any of the multipart names that a message allows! Instead, you must
count the number of components specified in the BODYSTRUCTURE,
beginning with index 1, to decide which part number to request. The
display structure() code does this counting using a simple loop, as you can
see.
Finally, the get() command not only allows you to pull only the bits of a
message that you require at any given time, but it also truncates them if they
are quite long and you only want to show an excerpt from the beginning to
entice the user! To utilise this functionality, place a slice in angle brackets
after any component name to specify the range of characters you want—it
works similarly to Python’s slice operation:
BODY[]<0.100>

From offset zero to offset one hundred, this would return the first 100 bytes
of the message body. This allows you to examine both the text and the
beginning of an attachment to learn more about its contents before allowing
the user to pick or download it.

Messages Can Be Flagged and Deleted
While working with Listing 15-7 or viewing the example output, you may
have observed that IMAP assigns flags to messages, which often take the
form of a backslash-prefixed word, such as Seen as seen for one of the
messages just mentioned. Several of these are standard, as stated in RFC
3501 for usage by all IMAP servers. The most essential ones are as follows:

\Answered: The message has been answered to by the user.
\Draft: The user hasn’t completed the message yet.

\flagged
The message has been flagged for some reason; the purpose and
significance of this flag varies depending on the e-mail reader.
\Recent: This message has never been viewed previously by any
IMAP client. This flag is distinct in that it cannot be added or removed
using standard commands; instead, it is automatically removed once
the mailbox has been selected.
\Seen: The message has been received and read.

As you can see, these flags roughly match to the information that many e-
mail readers provide visually about each message. Although the language
varies (several clients refer to messages as “new” rather than “not seen”),
practically all e-mail readers show these signals. Other flags may be
supported by specific servers, and the code for those flags will not always
begin with a backslash. Furthermore, because not all servers reliably
implement the Recent flag, general-purpose IMAP clients can only use it as
a hint.
There are numerous methods for working with flags in the IMAPClient
library. The most basic obtains the flags like if you had asked fetch() for
‘FLAGS,’ but it also removes the dictionary around each answer:
>>> c.get_flags(2703)
{2703: (‘\\Seen’,)}

There are also calls to add and remove flags from a message:
c.remove_flags(2703, [‘\\Seen’])
c.add_flags(2703, [‘\\Answered’])

You can use set flags() to replace the entire list of message flags with a new
one if you wish to totally modify the set of flags for a given message
without working out the necessary chain of adds and removes:
c.set_flags(2703, [‘\\Seen’, ‘\\Answered’])

Instead of the single UID illustrated in these examples, any of these
functions can take a list of message UIDs.

Messages Can Be Deleted
The way IMAP handles message deletion is another intriguing usage of
flags. For safety, the process is split into two steps: first, the client flags one

or more messages with the Delete flag, and then it runs purge() to perform
all of the pending deletion requests in one go.
The IMAPClient library, on the other hand, does not require you to do this
manually (though it may be done); instead, it hides the dialogue box. the
fact that flags are used behind a simple delete messages() method that
designates messages for you It must still be done. If you genuinely want the
operation to take effect, you must use purge() after it:
c.delete_messages([2703, 2704])
c.expunge()

Another reason to use UIDs instead of temporary IDs is that purge() will
reorganise the temporary IDs of the messages in the mailbox.

Searching
Another crucial feature for a protocol meant to retain all of your e-mail on
the e-mail server is searching: without searching, an e-mail client would
have to download all of a user’s e-mail the first time they wished to run a
full-text search to discover an e-mail message. The basis of search is
simple: you use the search() function on an IMAP client instance, and you
get the UIDs of the messages that match your criteria (assuming, of course,
that you accept the IMAPClient default of use uid=True for your client):
>>> c.select_folder(‘INBOX’)
>>> c.search(‘SINCE 13-Jul-2013 TEXT Apress’)
[2590L, 2652L, 2653L, 2654L, 2655L, 2699L]

These UIDs can then be used in the fetch() command to get the information
you need about each message in order to give the user a summary of the
search results.
The query shown in the preceding example combines two criteria: one
requesting recent messages (those received since July 13, 2013, the date on
which I am typing this) and the other requesting that the message text
contain the word Apress somewhere inside, and the results will include only
messages that satisfy both criteria—that is, messages that satisfy both
criteria after concatenating two criteria with a space. If you needed
messages that met at least one of the criteria but not both, you could use this
method.
OR (SINCE 20-Aug-2010) (TEXT BPBONLINE)

There are numerous criteria that can be combined to create a query. They
are defined in RFC 3501, much like the rest of IMAP. Some requirements
are straightforward, referring to binary properties such as flag:
ALL: Every message in the mailbox
UID (id, ...): Messages with the given UIDs
LARGER n: Messages more than n octets in length
SMALLER m: Messages less than m octets in length
ANSWERED: Have the flag \Answered
DELETED: Have the flag \Deleted
DRAFT: Have the flag \Draft
FLAGGED: Have the flag \Flagged
KEYWORD flag: Have the given keyword flag set
NEW: Have the flag \Recent
OLD: Lack the flag \Recent
UNANSWERED: Lack the flag \Answered
UNDELETED: Lack the flag \Deleted
UNDRAFT: Lack the flag \Draft
UNFLAGGED: Lack the flag \Flagged
UNKEYWORD flag: Lack the given keyword flag
UNSEEN: Lack the flag \Seen

There are also a number of flags that correspond to things in the headers of
each message. Except for the “send” tests, which look at the Date header,
each of them looks for a specific string in the same-named header:
BCC string
CC string
FROM string
HEADER name string
SUBJECT string
TO string

An IMAP message includes two dates: the send date, which is the internal
Date header supplied by the sender, and the date it actually arrived at the
IMAP server. (The former is obviously a fabrication, whereas the latter is as
trustworthy as the IMAP server and its clock.) So, depending on the date
you wish to query, there are two sets of criteria for dates:
BEFORE 01-Jan-1970
ON 01-Jan-1970
SINCE 01-Jan-1970

SENTBEFORE 01-Jan-1970
SENTON 01-Jan-1970
SENTSINCE 01-Jan-1970

Finally, there are two search operations that refer to the message’s text—
these are the workhorses that provide full-text searches like the ones your
users are likely to expect when typing into an e-mail client’s search field:
BODY string: The message body must contain the string. TEXT
string: The entire message, either body or header, must contain
the string somewhere.

Check the documentation for the IMAP server you’re using to see if it
supports “near miss” matches like those supported by modern search
engines, or if it only returns exact matches for the phrases you provide. If
your strings contain any special characters, try enclosing them in double
quotes and then backslash quoting any double quotes within the strings:
>>> c.search(r’TEXT “Quoth the raven, \”Nevermore.\””’)
[2652L]

I avoided needing to double up the backslashes to get single backslashes
across to IMAP by using a raw Python r’...’ string here.

Folders and Messages Manipulation
In IMAP, creating or removing folders is as simple as supplying the folder’s
name:
c.create_folder(‘Personal’)
c.delete_folder(‘Work’)

Some IMAP servers or setups may not allow these activities, or they may
have naming restrictions; make sure to call them with error checking in
place. Aside from the “standard” method of waiting for people to send you
new e-mail messages, you have two options for creating new e-mail
messages in your IMAP account. To begin, copy an existing message from
its original folder to a new folder. To visit the folder where the messages are
stored, use select folder(), and then run the copy method as follows:
c.select_folder(‘INBOX’)
c.copy([2653L, 2654L], ‘TODO’)

Finally, IMAP allows you to add a message to your mailbox. You don’t
need to use SMTP to transmit the message; all you need is IMAP. Adding a

message is a straightforward process, but there are a few things to keep in
mind. Line endings are the most important consideration. To identify the
end of a line of text, many Unix machines employ a single ASCII line feed
character (0x0a, or ‘n’ in Python). Two characters are used on Windows
machines: CR-LF, which is a manual return (0x0D, or ‘r’ in Python)
followed by a line feed. Only the manual return is used on older Macs.
IMAP, like many other Internet protocols (HTTP springs to mind), employs
CR-LF (‘rn’ in Python) to indicate the end of a line. If you upload a
message that includes any other character for the end of a line, some IMAP
servers will have issues. As a result, when translating uploaded texts, you
must always ensure that the line endings are proper. Because most local
mailbox formats only utilise ‘n’ at the end of each line, this problem is more
prevalent than you might think.
However, you must be careful how you change the line endings, because
some messages may contain ‘rn’ somewhere inside them despite only using
‘n’ for the first few dozen lines, and IMAP clients have been known to fail
if a message has both different line endings! The answer is straightforward,
thanks to Python’s splitlines() string method, which recognises all three
possible line endings; simply run the function on your message and reunite
the lines with the usual line ending.
>>> ‘one\rtwo\nthree\r\nfour’.splitlines()
[‘one’, ‘two’, ‘three’, ‘four’]
>>> ‘\r\n’.join(‘one\rtwo\nthree\r\nfour’.splitlines())
‘one\r\ntwo\r\nthree\r\nfour’

The actual act of adding a message is arranged by executing the append()
method on your IMAP client once you get the line endings correct:
c.append(‘INBOX’, my_message)

You can also send a normal Python datetime object as a keyword argument,
along with a list of flags and a msg time to be used as the message’s arrival
time.

Asynchrony
Finally, despite the fact that I have described IMAP as if it were a
synchronous protocol, it does accommodate clients that want to send dozens
of queries over the socket to the server and then receive the responses in

whatever order the server can most efficiently gather and respond to the e-
mail.
By constantly sending one request, waiting for the response, and then
returning that result, the IMAPClient library hides this protocol flexibility.
However, other libraries, such Twisted Python’s IMAP capabilities, allow
you to take advantage of its asynchronicity. The synchronous technique
used in this chapter should enough for most Python programmers who need
to script mailbox interactions. If you do decide to branch out and use an
asynchronous library, you’ll already be familiar with all of the IMAP
commands from this chapter’s explanations, and you’ll simply need to learn
how to transmit those commands using the asynchronous library’s API.

Conclusion
IMAP is a reliable mechanism for retrieving e-mail messages from a remote
server. Many Python IMAP libraries exist; imaplib is included in the Python
Standard Library, but it requires you to perform all of the low-level
response parsing yourself. IMAPClient by Menno Smits, which you can get
through the Python Package Index, is a significantly better option.
Your e-mail messages are organised into folders on an IMAP server, some
of which are pre-defined by your IMAP provider and others that you can
establish yourself. IMAP clients can make folders, delete folders, add new
messages to existing folders, and move messages across folders. Messages
may be listed and fetched extremely flexibly once a folder has been
selected, which is the IMAP equivalent of a “change directory” command
on a file system. Instead of downloading every message in its entirety
(though that is an option), the client can request specific information from a
message, such as a few headers and the message structure, to create a
display or summary into which the user can click, bringing message parts
and attachments down from the server on demand.
The client can also put flags on each message, some of which are also
relevant to the server, and delete messages by setting the Delete flag and
then expunging them. Finally, IMAP provides powerful search
functionality, allowing users to do typical tasks without having to transfer e-
mail data to their local system.

In the following chapter, we’ll move on from e-mail and look at a whole
different sort of communication: sending shell instructions to a distant
server and receiving the results in return.

CHAPTER 16
SSH and Telnet

If you haven’t already, make a cup of coffee, sit down, and read Neal
Stephenson’s article “In the Beginning... Was Command Line” if you
haven’t before (William Morrow Paperbacks, 1999).
You can also get a copy from his website,
www.cryptonomicon.com/beginning.html, in the form of a raw text file
(appropriately enough). Fortunately, one of the most important subjects in
this book will be the old-fashioned idea of transmitting basic textual
commands to another computer for many readers. After you’ve done
utilising a web hosting company’s sophisticated control panel to set up your
domain names and list of web applications, the command line becomes
your primary method of installing and running the code that powers your
websites.
SSH connections are almost always used to administer virtual or physical
servers from businesses like Rackspace and Linode. If you use an API-
based virtual hosting provider like Amazon AWS to create a cloud of
dynamically assigned servers, you’ll find that Amazon offers you access to
your new host by asking for an SSH key and installing it, allowing you to
log into your new instance immediately and without a password. It’s as
though once early computers learned to accept text commands and respond
with text output, they reached a height of usefulness that has yet to be
surpassed. No amount of pointing, clicking, or dragging with a mouse has
ever represented a fraction of what can be said when you type, even in the
constrained and demanding language of the Unix shell.

Structure:
Automation using the command line
Expansion of the Command Line and Quoting
Arguments to Unix commands can contain (almost) any character

http://www.cryptonomicon.com/beginning.html

Characters I’ve Quoted for Protection
Windows’ Horrible Command Line
In a terminal, things are different
Telnet
SSH: The Secure Shell
SSH: A Quick Overview
Host Keys for SSH
Authentication with SSH
Individual Commands and Shell Sessions
SFTP (SSH File Transfer Protocol)
Additional Features
Conclusion

Objectives:
This chapter focuses on the command line. It explains how to connect to it
via the network and provides enough information about its regular
behaviour to help you get beyond any frustrating issues you might have
while trying to utilize it.

Automation using the command line
Before we go into the specifics of how the command line works and how
you can access a remote command line over the network, keep in mind that
if your aim is to perform remote system administration, you may want to
look into other solutions. Here are three paths in which the Python
community has taken remote automation, in order of increasing
sophistication:

1. Fabric allows you to script actions that are executed over SSH
connections to your servers, but it only supports Python 2 at the
present (see www.fabfile.org/).

2. Ansible is a simple and powerful tool that allows you to specify how
dozens or hundreds of remote machines should be setup. It establishes
SSH connections to each of them and performs any necessary checks

http://www.fabfile.org/

or upgrades. Its speed and design have piqued the interest of the
Python community as well as the broader system administration
community (see http://docs.ansible.com/index.html).

3. Instead of riding on top of SSH, SaltStack requires you to install its
own agent on each client system. This allows the master to push new
information to remote machines much faster than hundreds or
thousands of concurrent SSH connections would allow. In exchange, it
is lightning fast, even for massive installations and clusters (see
www.saltstack.com/).

Finally, I’d want to bring up pexpect. While it is technically not a network-
aware programme, it is frequently used to control the system ssh or telnet
command when a Python coder needs to automate interactions with a
remote prompt. This usually happens when a device doesn’t have an API
and commands must be input each time the command-line prompt displays.
Simple network hardware configuration frequently necessitates this kind of
clumsy step-by-step engagement. More information regarding pexpect can
be found at http://pypi.python.org/pypi/pexpect.
Of course, it’s possible that none of these automated solutions will be
sufficient for your project, and you’ll have to roll up your sleeves and learn
how to control remote-shell protocols on your own. You’ve come to the
proper location if that’s the case. Continue reading

Expansion of the Command Line and Quoting
If you’ve ever typed commands at a Unix command line, you know that not
every character is translated literally. Consider the following command as
an example. (Note that the dollar sign, $, will be used as the shell’s prompt
in this and all of the examples that follow in this chapter, indicating that “it
is your turn to type.”)
$ echo *
sftp.py shell.py ssh_commands.py ssh_simple.py ssh_simple.txt
ssh_threads.py telnet_codes.py
telnet_login.py

This command’s asterisk (*) was not taken to mean “print an actual asterisk
character to the screen.”

http://docs.ansible.com/index.html
http://www.saltstack.com/
http://pypi.python.org/pypi/pexpect

Instead, the shell assumed I was attempting to create a pattern that would
match all of the files in the current directory. I have to use another special
character, an escape character, to print a true asterisk since it allows me to
“escape” from the shell’s typical meaning and tell it that I just mean the
asterisk literally.
$ echo Here is a lone asterisk: *
Here is a lone asterisk: *
$ echo And here are ‘*’ two “*” more asterisks
And here are * two * more asterisks

Shells can run subprocesses, the output of which is subsequently utilised in
the text of yet another command—and they can now even conduct math.
You can ask the ubiquitous bash Bourne-again shell—the standard shell on
most Linux systems these days—to divide the number of words in the essay
by the number of lines and produce a result to see how many words per line
Neal Stephenson fits in the plain-text version of his “In the Beginning...
Was the Command Line” essay.
$ echo $(($(wc -w < command.txt) / $(wc -l < command.txt)))
words per line
46 words per line

The rules by which current shells read special characters in your command
line have gotten rather complex, as seen by this example. In a normal 8024
terminal window, the bash shell manual page presently runs 5,375 lines, or
223 screens full of text! Obviously, exploring even a fraction of the possible
ways that a shell can misinterpret a command that you input would take this
chapter astray. Instead, you’ll concentrate on just two crucial aspects in the
following sections to help you utilise the command line effectively:

The shell you’re using, such as bash, interprets special characters as
special. They have no specific significance for the operating system.
When providing commands to a shell, whether locally or via a
network, you must escape special characters so that they are not
extended into unexpected values on the remote system, as will be the
case in this chapter.

Each of these points will now be discussed in its own section. Keep in mind
that I’m discussing mainstream server operating systems like Linux and OS
X, not more primitive ones like Windows, which I’ll cover separately.

Arguments to Unix commands can contain
(almost) any character.
There are no special or reserved characters in the low-level Unix command
line. This is a crucial thing for you to understand. If you’ve ever used a
shell like bash for any length of time, you’ve probably grown to regard your
system command line as a minefield. On the one hand, the special
characters make it simple to name all of the files in the current directory as
command arguments. However, it might be difficult to send a message to
the screen that performs something as basic as mixing single and double
quotes, and it can be tough to figure out which letters are safe and which are
among the numerous that the shell considers special. Which racters are safe,
and which are among the many that the shell regards as unique?
This section’s main point is that the shell’s entire set of conventions for
special characters has nothing to do with your operating system. They are
totally the behaviour of the bash shell, or any of the other popular (or
arcane) shells you are using. No matter how familiar the rules appear or
how impossible it is to fathom operating a Unix-like system without them,
they must be followed. When you remove the shell, the phenomena of
special characters disappears.
You may easily observe this by starting a process and attempting to throw
some special characters at a common command.
>>> import subprocess
>>> args = [‘echo’, ‘Sometimes’, ‘*’, ‘is just an asterisk’]
>>> subprocess.call(args)
Sometimes * is just an asterisk

You’ve chosen to start a new process with arguments rather than enlisting
the help of a shell. Instead of having the * transformed into a list of file
names first, the process—in this case, the echo command—gets exactly
those letters. Though the asterisk wildcard character is commonly used, the
shell’s most common special character is the space character, which you use
all the time. Each space is considered as a separator between arguments.
When people include spaces in Unix file names and then try to relocate the
file somewhere else, this results in countless hours of enjoyment.
$ mv Smith Contract.txt ~/Documents
mv: cannot stat `Smith’: No such file or directory

mv: cannot stat `Contract.txt’: No such file or directory

To get the shell to realise that you’re talking about a single file with a space
in its name rather than two, try one of the following command lines:
$ mv Smith\ Contract.txt ~/Documents
$ mv “Smith Contract.txt” ~/Documents
$ mv Smith*Contract.txt ~/Documents

The last option plainly differs from the first two since it will match any file
name that begins with Smith and ends with Contract.txt, regardless of
whether the text between them is a single space character or a much larger
string of characters. When users are still learning shell protocols and can’t
remember how to enter a literal space character, they frequently resort to
using a wildcard. Listing 16-1 demonstrates a basic shell built in Python
that treats only the space character as special but passes everything else
through literally to command, if you want to convince yourself that none of
the characters that the bash shell has taught you to be careful about are
anything unique.

Listing 16-1. Arguments Separated by Whitespace are supported by Shell.
#!/usr/bin/env python3
Programming in Python: The Basics.
A simple shell, so you can try running commands at a prompt
where no
characters are special (except that whitespace separates
arguments).
import subprocess
def main():

while True:
args = input(‘] ‘).strip().split()
if not args:

pass
elif args == [‘exit’]:

break
elif args[0] == ‘show’:

print(“Arguments:”, args[1:])
else:

try:
subprocess.call(args)

except Exception as e:
print(e)

if __name__ == ‘__main__’:
main()

Of course, the lack of special quoting characters in this simple shell means
you can’t use it to talk about files with spaces in their names because it
always, without exception, interprets a space as the end of one parameter
and the start of the next. When you run this shell and test all of the special
characters you’ve been afraid to use, you’ll notice that they have no effect
when handed directly to the usual commands you do use. (To distinguish
itself from your own shell, the shell in Listing 16-2 uses a] prompt.)
$ python shell.py
] echo Hi there!
Hi there!
] echo An asterisk * is not special.
An asterisk * is not special.
] echo The string $HOST is not special, nor are “double
quotes”.
The string $HOST is not special, nor are “double quotes”.
] echo What? No *<>!$ special characters?
What? No *<>!$ special characters?
] show “The ‘show’ built-in lists its arguments.”
Arguments: [‘”The’, “’show’”, ‘built-in’, ‘lists’, ‘its’,
‘arguments.”’]
] exit

You can see here that Unix commands—in this case, the /bin/echo
command that you are repeatedly calling—do not pay attention to special
characters in their parameters. Double quotes, dollar signs, and asterisks are
all accepted and treated as literal characters by the echo command. Python
merely reduces your arguments to a collection of strings that the operating
system can use to create a new process, as the preceding show command
demonstrates.
What if you don’t split your command into distinct arguments and instead
give the operating system a single string containing both the command
name and the argument?
>>> import subprocess

>>> subprocess.call([‘echo hello’])
Traceback (most recent call last):
...

FileNotFoundError: [Errno 2] No such file or directory: ‘echo
hello’

Do you see what’s going on? The operating system does not recognise that
spaces should be special. As a result, the system believes it is being asked
to run a command with the exact name echo[space]hello, and it fails to
discover it unless you have generated one in the current directory. The null
character (the character with the Unicode and ASCII code zero) is the only
character that is truly unique to the system. In Unix-like systems, the null
character is used to indicate the end of each command-line argument in
memory. As a result, if you use a null character in an argument, Unix will
assume the argument is over and ignore the rest of the text. Python will stop
you in your tracks if you include a null character in a command-line
argument to prevent you from making this mistake.
>>> subprocess.call([‘echo’, ‘Sentences can end\0 abruptly.’])
Traceback (most recent call last):
...

TypeError: embedded NUL character

Fortunately, because every command on the system is designed to work
within this constraint, there is almost never a reason to use null characters
in command-line parameters. (They can’t occur in file names for the same
reason they can’t exist in argument lists: file names are presented to the
operating system as null-terminated strings.)

Characters I’ve Quoted for Protection
You used procedures in Python’s subprocess module to directly invoke
commands in the previous section. This was fantastic, as it allowed you to
pass characters that would have been unique in a traditional interactive
shell. If you have a long list of file names with spaces and other special
characters, passing them into a subprocess call and having the command on
the other end understand you completely might be quite useful. When using
remote-shell protocols over the network, you’ll usually be talking to a shell
like bash rather than being able to directly invoke commands like you do
with the subprocess module. This means that remote-shell protocols will

seem more like the os module’s system() procedure, which runs a shell to
interpret your command and therefore immerses you in the Unix command
line’s intricacies.
>>> import os
>>> os.system(‘echo *’)
sftp.py shell.py ssh_commands.py ssh_simple.py ssh_simple.txt
ssh_threads.py telnet_codes.py
telnet_login.py

Your network applications may connect to a variety of system and
embedded shells, which offer a variety of quoting and wildcard
conventions. They can be extremely arcane in some circumstances. If the
opposite end of a network connection is a regular Unix shell from the sh
family, such as bash or zsh, you’re in luck: the rather obscure Python pipes
module, which is normally used to generate sophisticated shell command
lines, provides a helper function that is ideal for escaping parameters. It’s
called quote, and all you have to do is provide it a string.
>>> from pipes import quote
>>> print(quote(“filename”))
filename
>>> print(quote(“file with spaces”))
‘file with spaces’
>>> print(quote(“file ‘single quoted’ inside!”))
‘file ‘”’”’single quoted’”’”’ inside!’

>>> print(quote(“danger!; rm -r *”))
‘danger!; rm -r *’

As a result, preparing a command line for remote execution can be as
simple as calling quote() on each parameter and then pasting the output
with spaces. It’s worth noting that sending commands to a remote shell with
Python usually avoids the horrors of two levels of shell quoting, which you
might have encountered if you’ve ever attempted to compose a remote SSH
command line that employs fancy quotation. Attempting to construct shell
commands that transmit arguments to a remote shell usually results in a
series of trials like this:
$ echo $HOST
guinness
$ ssh asaph echo $HOST
guinness

$ ssh asaph echo \$HOST
asaph
$ ssh asaph echo \\$HOST
guinness
$ ssh asaph echo \\\$HOST
$HOST
$ ssh asaph echo \\\\$HOST
\guinness

You can prove to yourself that each of these responses is reasonable. To
observe how the processed text is handled in a remote SSH command line,
first use echo to check what each command appears like when quoted by
the local shell, and then paste that text into a remote SSH command line.
These commands, however, can be difficult to write, and even a seasoned
Unix shell scripter can make a mistake while attempting to forecast the
outcome of the preceding series of commands!

Windows’ Horrible Command Line
Have you enjoyed learning about the Unix shell and how parameters are
provided to a process in the previous sections? If you’re connecting to a
Windows machine using the remote-shell protocol, you can disregard
anything you’ve read thus far. Windows is a fascinatingly rudimentary
operating system. Instead of passing command-line arguments to a new
process as separate strings, it just passes the full command line to the new
process that is starting up, leaving the process to figure out how the user
could have quoted file names with spaces! People in the Windows
environment have, of course, embraced more or less consistent norms about
how commands would read their arguments just to live. Put double quotes
around a multiword file name, for example, and almost all programmes will
realise that you’re naming one file rather than multiple. Asterisks in a file
name are interpreted as wildcards by most commands. However, the
application you’re running, not the command prompt, makes this decision.
As you’ll see, there’s an ancient network protocol—the Telnet protocol—
that sends command lines as plain text, exactly like Windows does. As a
result, if your software sends parameters that contain spaces or special
characters, it will have to do some sort of escape. If you’re using a modern
remote protocol like SSH, which allows you to send parameters as a list of

strings rather than a single string, be aware that on Windows systems, SSH
can only reassemble your carefully designed command line and hope that
the Windows command can figure it out.
When sending commands to Windows, you might want to use the Python
subprocess module’s list2cmdline() method. It accepts a list of arguments
identical to those used for a Unix command and tries to paste them together
—using double quotes and backslashes as needed—so that standard
Windows programmes can parse the command line back into the same
arguments.
>>> from subprocess import list2cmdline
>>> args = [‘rename’, ‘salary “Smith”.xls’, ‘salary-
smith.xls’]
>>> print(list2cmdline(args))
rename “salary \”Smith\”.xls” salary-smith.xls

You should be able to figure out what Windows requires in your
circumstance by experimenting with your network library and remote-shell
protocol of choice. I’ll assume for the rest of this chapter that you’re
connecting to servers that run a modern Unix-like operating system that can
keep discrete command-line parameters separate without the need for extra
quoting.

In a terminal, things are different.
Over your Python-powered remote connection, you’ll presumably
communicate with more than simply a shell. Keeping an eye on the
incoming data stream for data and faults printed by the command you’re
executing is a good idea. You may also want to send data back, either to
provide input to the remote software or to answer to questions and prompts
presented by the programme. When completing operations like these, you
may be surprised to discover that applications hang forever without ever
transmitting the output you’re expecting. Alternatively, data you submit
may not appear to be receiving. A quick introduction of Unix terminals is
necessary to assist you navigate situations like this. A terminal is a device
that allows a user to write text and see the computer’s answer on a screen. If
a Unix machine contains physical serial ports that may be used to host a
physical terminal, the device directory will have entries like /dev/ttyS1 that
allow applications to send and receive strings to that device. Most terminals

these days, however, are actually other programmes: an xterm terminal, a
Gnome or KDE terminal programme, the Mac OS X iTerm or Terminal, or
even a PuTTY client on a Windows system linked via a remote-shell
protocol like the one described in this chapter. Programs operating in a
terminal on your computer will often try to figure out if they’re talking to a
person, and only if they’re linked to a terminal device would they presume
their output should be prepared for people. As a result, the Unix operating
system includes a collection of “pseudo-terminal” devices (also known as
“virtual” terminals) with names like /dev/tty42 to which programmes can be
linked if they want to believe they are speaking with a real person. When a
user opens an xterm or connects over SSH, the xterm or SSH daemon
creates a new pseudo-terminal, configures it, and executes the user’s shell.
TTY is the shorthand for a terminal device in Unix since the loud TeleType
machine was the first example of a computer terminal. That’s why the isatty
call is used to see if your input is a terminal ().
This is an important distinction to grasp: the shell displays a prompt
because it believes it is connected to a terminal. If you start a shell with a
standard input that isn’t a terminal—say, a pipe from another command—
no prompt will be printed, but commands will still be accepted.
$ cat | bash
echo Here we are inside of bash, with no prompt
Here we are inside of bash, with no prompt
python3
print(‘Python has not printed a prompt, either.’)
import sys
print(‘Is this a terminal?’, sys.stdin.isatty())

Python hasn’t printed a prompt, and neither has bash. Python is, in reality,
unusually silent. While bash provided a line of text in response to our echo
command, you have now typed three lines of input into Python without
receiving any answer. What exactly is going on?
Python believes that because its input is not a terminal, it should simply
read a full Python script from standard input. After all, its input is a file, and
files can contain entire scripts. To finish Python’s potentially unending
read-until-end-of-file operation, click Ctrl-D to send a “end-of-file”
command to cat, which will then close its own output and end the example.
Python will parse and run the three-line script you’ve provided (everything

past the word python in the session just showed), and you’ll see the results
on your terminal, followed by the prompt of the shell you began with.
Python has not printed a prompt, either.
Is this a terminal? False

Depending on whether they’re talking to a terminal or not, some
programmes modify their output format automatically. If used interactively,
the ps command will truncate each output line to your terminal width,
however if used as a pipe or file, it will produce output that is arbitrarily
broad. The ls command’s traditional column-based output is also replaced
with a file name on each line (which is, you must admit, an easier format
for reading by another program).
$ ls
sftp.py ssh_commands.py ssh_simple.txt telnet_codes.py
shell.py ssh_simple.py ssh_threads.py telnet_login.py
$ ls | cat
sftp.py
shell.py
ssh_commands.py
ssh_simple.py
ssh_simple.txt
ssh_threads.py
telnet_codes.py
telnet_login.py

So, how does any of this relate to network programming? Well, the two
characteristics you’ve seen—programs that display prompts when
connected to a terminal but don’t display them and run silently when
reading from a file or the output of another command—appear at the remote
end of the shell protocols you’re looking at in this chapter. For example, a
programme operating behind Telnet always thinks it’s communicating to a
terminal. As a result, whenever the shell is ready for input, your scripts or
programmes must always anticipate to receive a prompt, and so on. When
using the more advanced SSH protocol, however, you can choose whether
the software considers the input to be a terminal or just a pipe or file. If
there is another computer to which you can connect, you may easily test
this from the command line.
$ ssh -t asaph

asaph$ echo “Here we are, at a prompt.”

Here we are, at a prompt.

asaph$ exit

$ ssh -T asaph

echo “The shell here on asaph sees no terminal; so, no

prompt.”

The shell here on asaph sees no terminal; so, no prompt.

exit

$

When you use a modern protocol like SSH to spawn a command, you must
decide whether you want the remote programme to think it’s talking to raw
data flowing in through a file or pipe, or whether you want it to think it’s
talking to a person typing at it through a terminal. When communicating
with a terminal, programmes are not needed to behave differently. They
only change their conduct for our convenience. They do so by performing
the Python isatty() call (“Is this a teletype?”) that you saw in the previous
example session, and then changing their behaviour based on the results.
Here are a few examples of how they differ:

When talking to a terminal, programmes that are frequently used
interactively will display a human-readable prompt. When they
believe input is coming from a file, however, they don’t produce a
prompt because if they did, your screen would be filled with hundreds
of prompts as you ran a long shell script or Python programme!
When a TTY is used as input, most advanced interactive programmes
provide command-line editing. Because they are used to access the
command-line history and perform editing commands, many control
characters are unique. When they are not controlled by a terminal,
these applications disable command-line editing and accept control
characters as normal components of their input stream.
When listening to a terminal, many programmes only read one line of
input at a time since humans prefer to have an immediate answer to
every command they write. When reading from a pipe or file, these
programmes, on the other hand, will wait until thousands of characters
have arrived before attempting to understand the initial batch of data.
Even if the input is a file, bash remained in line-at-a-time mode, while
Python decided to read the entire Python script from the input before
attempting to execute even the first line. It’s even more usual for

programmes to change their output depending on whether they’re
communicating with a terminal.

If a user is watching, they expect each line of output, or even each letter, to
display instantly. If they’re talking to a file or a pipe, on the other hand,
they’ll wait and group up large chunks of output before sending it all at
once.
Both of the last two issues, which involve buffering, cause a slew of issues
when you try to automate a process that is typically done manually—
because when you do so, you frequently switch from terminal input to input
provided through a file or pipe, and the programmes suddenly behave very
differently. Because “print” statements do not provide immediate output,
but instead save their results to push out all at once when their output buffer
is full, they may appear to be stuck.
Because of the aforementioned issue, many carefully constructed
programmes in Python and other languages routinely execute flush() on
their output to ensure that any data waiting in a buffer is sent out, regardless
of whether the output looks like a terminal. These are the fundamental
issues with terminals and buffering: When talking to a terminal,
programmes change their behaviour in unusual ways, and they typically
start heavily buffering their output if they assume they’re writing to a file or
pipe instead of letting you see it right away.

Terminals are responsible for buffering
Aside from the program-specific behaviours previously outlined, terminal
devices also bring another set of issues. What happens if you want a
software to read one character at a time, but the Unix terminal device
buffers your keystrokes and sends them as a single line? This is because the
Unix terminal defaults to “canonical” input processing, which allows the
user to type an entire line—and even edit it by backspacing and retyping—
before pressing Enter and letting the programme see what they’ve entered.
You can use the stty “change the current TTY’s settings” command to
deactivate canonical processing so that a programme can see every
individual character as it is typed.
$ stty –icanon

Another issue is that Unix terminals used to feature a pair of keystrokes that
allowed users to halt the output and read a complete screen of text before it
scrolled off and was replaced by more text. The characters Ctrl+S for
“Stop” and Ctrl+Q for “Keep going” were frequently used, and it was a
source of great annoyance if binary data got into an automated Telnet
connection because the first Ctrl+S that happened to pass across the channel
would pause the terminal and most likely ruin the session. stty can be used
to disable this setting once more.
$ stty -ixon –ixoff

Those are the two most common issues with terminals that buffer, although
there are many of less well-known options that can also cause problems.
The stty command actually supports two modes because there are so many,
and they differ between Unix implementations. Cooked and raw are the
modes, which turn dozens of settings like icanon and ixon on and off at the
same time.
$ stty raw
$ stty cooked

If you make a hopeless mess of your terminal settings after a bit of
tinkering, most Unix systems have a command for resetting the terminal to
sensible, sane defaults. (Note that if you’ve messed around with stty too
much, you may need to press Ctrl+J to submit the reset command, as your
Return key, which is Ctrl+M, only works to submit commands due to a
terminal configuration called icrnl.)
$ reset

If you’re talking to a terminal from your own Python script and don’t want
to try to get it to behave via a Telnet or SSH session, check out the termios
module from the Standard Library. You should be able to manipulate all of
the same settings that you just accessed with the stty command by puzzling
through its sample code and remembering how Boolean bitwise math
works. Although there isn’t enough room in this book to go into more detail
about terminals (since one or two chapters of examples could easily be
inserted right here to cover just the more interesting techniques and cases),
there are plenty of excellent resources for learning more about them—a
classic is W. Richard Stevens’ Advanced Programming in the UNIX
Environment, Chapter 19, “Pseudo Terminals” (Addison-Wesley
Professional, 1992).

Telnet
This book’s only mention of the archaic Telnet protocol is in this brief
section. Why? It’s insecure because anyone who watches your Telnet
packets pass by can see your account, password, and everything you do on
the distant system. It’s clumsy, and it’s no longer used for most system
administration tasks.
■ THE TELNET PROTOCOL
Purpose: Remote shell access
Standard: RFC 854 (1989)
Runs atop: TCP/IP
Default port: 23
Library: telnetlib
Exceptions: socket.error, socket.gaierror, EOFError, select.error
Only when connecting with a small, embedded machine, such as a Linksys
router, DSL modem, or network switch deep inside a well-firewalled
corporate network, do I use Telnet. Here are some recommendations on
how to use the Python telnetlib if you need to develop a Python programme
that needs to Telnet to one of these devices. To begin, you must understand
that Telnet simply establishes a channel—in this case, a pretty basic TCP
socket (see Chapter 3)—and then copies data in both directions across that
channel. Everything you type is transferred over the wire, and Telnet prints
everything it gets to the screen. This means Telnet is unaware of a wide
range of issues that a remote-shell protocol should be aware of.
When you Telnet to a Unix machine, for example, you are usually given
with a login: prompt, where you type your username, and then a password:
prompt, where you type your password. Small, embedded devices that still
utilise Telnet nowadays may have a little simpler script, but they almost
always require authentication or a password. In any case, Telnet is
completely unaware of this method of communication! Password: is
basically nine random characters that come flying across the TCP
connection and that your Telnet client has to print on your screen. Because
Telnet isn’t aware of authentication, you can’t send any arguments to the
Telnet command to be preauthenticated to the remote system, and you can’t
skip the login and password prompts that appear when you initially connect.

If you’re going to utilise regular Telnet, you’ll have to keep an eye on the
incoming text for those two prompts (or however many the remote system
provides) and then type the appropriate responses.
You can’t expect standardisation in the error messages or responses
produced when your password fails if systems differ in what username and
password prompts they present. That’s why it’s so difficult to script and
programme Telnet in a language like Python. Unless you know every single
error message that the remote system could print in response to your login
and password—which could include things like “cannot spawn shell: out of
memory,” “home directory not mounted,” and “quota exceeded: confining
you to a restricted shell”—your script will occasionally run into situations
where it is expecting to see either a command prompt or a specific error
message, but instead will simply waffle.
As a result, if you use Telnet, you are solely playing a text-based game. You
wait for a text to arrive and then try to respond to the remote system with
something understandable. The Python telnetlib library can help you with
this by providing not only basic ways for sending and receiving data, but
also a few functions that will watch and wait for a specific string to arrive
from the remote system. Telnetlib is similar to the third-party Python
pexpect package that I mentioned previously in this chapter, and hence to
the old Unix expect command in this regard. In fact, one of these telnetlib
procedures is named expect in homage of its predecessor ().
Listing 16-2 establishes a connection to the host, automates the entire back-
and-forth login discussion, and then executes a simple command to display
the results.

Listing 16-2. Using Telnet to Login to a Remote Host
#!/usr/bin/env python3
Programming in Python: The Basics.
Connect to localhost, watch for a login prompt, and try
logging in
import argparse, getpass, telnetlib
def main(hostname, username, password):

t = telnetlib.Telnet(hostname)
t.set_debuglevel(1) # uncomment to get debug messages
t.read_until(b’login:’)

t.write(username.encode(‘utf-8’))
t.write(b’\r’)
t.read_until(b’assword:’) # first letter might be ‘p’ or ‘P’
t.write(password.encode(‘utf-8’))
t.write(b’\r’)
n, match, previous_text = t.expect([br’Login incorrect’,
br’\$’], 10)

if n == 0:
print(‘Username and password failed - giving up’)

else:
t.write(b’exec uptime\r’)
print(t.read_all().decode(‘utf-8’)) # read until socket
closes

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Use Telnet to
log in’)
parser.add_argument(‘hostname’, help=’Remote host to telnet
to’)
parser.add_argument(‘username’, help=’Remote username’)
args = parser.parse_args()
password = getpass.getpass(‘Password: ‘)
main(args.hostname, args.username, password)

If the script is successful, it shows you what the simple uptime command
prints on the remote system.
$ python telnet_login.py example.com john
Password: abc12345
10:24:43 up 5 days, 12:13, 14 users, load average: 1.44, 0.92,
0.74

The following diagram depicts the general structure of a telnetlib-powered
session. To begin, a connection is formed, which is represented in Python
by a Telnet class instance. Only the hostname is supplied here, but you can
additionally include a port number if you want to connect to a service port
other than conventional Telnet.
If you want your Telnet object to print out all of the strings it sends and
receives during the session, call set debuglevel(1). This was crucial for
constructing even the very simple script described in listing, because the

script stalled twice and I had to restart it with debugging messages enabled
so that I could view the actual output and repair the script. (Once I forgot
the ‘r’ at the end of the uptime command, and the other time I failed to
match the exact text that was returned.) I usually turn off debugging once a
programme is up and running, then put it back on anytime I need to work
on the script again. Telnet does not hide the fact that its service is backed by
a TCP socket, and any socket.error or socket.gaierror exceptions will be
passed through to your programme. Once you’ve created a Telnet session,
interactivity usually follows a receive-and-send pattern, in which you wait
for a prompt or answer from the remote end before sending your next piece
of data. The following is a list of two ways to wait for text to arrive:

The simple read until() function waits for a literal string to arrive
before returning a string that contains all of the text it got from the
time it started listing till it saw the string you were looking for.
The expect() method, which is more powerful and advanced, accepts
a list of Python regular expressions. Expect() returns three items once
the text received from the remote end adds up to something that
matches one of the regular expressions: the index in your list of the
pattern that matched, the regular expression SRE Match object itself,
and the text that was received leading up to the matching text. Read
the Standard Library documentation for the re module for further
information on what you can do with an SRE Match, including finding
values for any subexpressions in your pattern.

Regular expressions, like any other type of expression, must be written with
care. When I first developed this script, I used the expect() pattern ‘$’ to
watch for the shell prompt to appear—which is unfortunately a special
character in regular expression! As a result, the revised script in listing
escapes the $, causing expect() to wait until it receives a dollar sign from
the remote end.
The script leaves if it receives an error message due to an incorrect
password and does not become trapped waiting indefinitely for a login or
password prompt that never arrives or looks different than it expected.
$ python telnet_login.py example.com john
Password: wrongpass
Username and password failed - giving up

If you need to use Telnet in a Python script, it’ll just be a larger or more
complicated version of the same simple structure illustrated here. Both read
until() and expect() accept a second argument, timeout, which sets a
maximum limit in seconds for how long the call will look for the text
pattern before giving up and returning control to your Python script. If they
quit and give up due to the timeout, they don’t throw an error; instead, they
just return the text they’ve seen so far and leave it up to you to figure out
whether or not that text contains the pattern! There are a few tidbits in the
Telnet object that I won’t go through right now. They are documented in the
telnetlib Standard Library, including an interact() method that allows the
user to “speak” directly over your Telnet connection via the terminal! This
type of call was common in the past when you needed to automate login but
still have control and send standard commands. The Telnet protocol has a
standard for embedding control information, and telnetlib strictly respects
these guidelines to keep your data distinct from any control codes that may
appear. As a result, you may use a Telnet object to send and receive any
binary data you want while ignoring the possibility of control codes arriving
as well. If you’re working on a complex Telnet-based project, though, you
might need to process options.
Normally, telnetlib bluntly refuses to submit or accept an option request
when a Telnet server delivers one. For processing options, you can specify a
Telnet object with your own callback function. Listing 16-3 shows a simple
example. It basically reimplements the usual telnetlib behaviour for most
options and refuses to handle any others. (Remember to react to each option
in some fashion; failing to do so will frequently cause the Telnet session to
hang as the server waits indefinitely for your response.) If the server
exhibits an interest in the “terminal type” option, this client responds with
mypython, which is recognised by the shell command it performs after
logging in as its $TERM environment variable.

Listing 16-3. Telnet Option Codes: How to Handle Them
#!/usr/bin/env python3
Programming in Python: The Basics.
How your code might look if you intercept Telnet options
yourself
import argparse, getpass

from telnetlib import Telnet, IAC, DO, DONT, WILL, WONT, SB,
SE, TTYPE
def process_option(tsocket, command, option):

if command == DO and option == TTYPE:
tsocket.sendall(IAC + WILL + TTYPE)
print(‘Sending terminal type “mypython”’)
tsocket.sendall(IAC + SB + TTYPE + b’\0’ + b’mypython’ +
IAC + SE)

elif command in (DO, DONT):
print(‘Will not’, ord(option))
tsocket.sendall(IAC + WONT + option)

elif command in (WILL, WONT):
print(‘Do not’, ord(option))
tsocket.sendall(IAC + DONT + option)

def main(hostname, username, password):
t = Telnet(hostname)
t.set_debuglevel(1) # uncomment to get debug messages
t.set_option_negotiation_callback(process_option)
t.read_until(b’login:’, 10)
t.write(username.encode(‘utf-8’) + b’\r’)

t.read_until(b’password:’, 10) # first letter might be ‘p’ or
‘P’

t.write(password.encode(‘utf-8’) + b’\r’)
n, match, previous_text = t.expect([br’Login incorrect’,
br’\$’], 10)
if n == 0:
print(“Username and password failed - giving up”)

else:
t.write(b’exec echo My terminal type is $TERM\n’)
print(t.read_all().decode(‘ascii’))

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Use Telnet to
log in’)

parser.add_argument(‘hostname’, help=’Remote host to telnet
to’)

parser.add_argument(‘username’, help=’Remote username’)
args = parser.parse_args()

password = getpass.getpass(‘Password: ‘)
main(args.hostname, args.username, password)

Again, the relevant RFCs can be consulted for more information on how
Telnet options function. In the next part, I’ll abandon the insecure Telnet
protocol in favour of a more current and secure method of executing remote
operations.

SSH: The Secure Shell
SSH is one of the most well-known safe, encrypted protocols (HTTPS is
perhaps the most well-known).
■ THE SSH PROTOCOL
Purpose: Secure remote shell, file transfer, port forwarding
Standard: RFC 4250–4256 (2006)
Runs atop: TCP/IP
Default port: 22
Library: paramiko
Exceptions: socket.error, socket.gaierror,
paramiko.SSHException

SSH is a descendant of a protocol that allowed for “remote login,” “remote
shell,” and “remote file copy” operations. commands such as rlogin, rsh,
and rcp, which were far more popular than Telnet at the time.
sites that backed them up Unless you’ve spent hours using rcp, you can’t
imagine what a revelation it was. attempting to transmit binary files
between machines using Telnet and a script that attempts to input your
password only to find out that your file contains a bit that appears like a
Telnet or remote control character Until you add a layer of escape (or figure
out how to disable both), the whole system will hang. All interpretation
takes place on a remote terminal using the Telnet escape key.) The nicest
characteristic of the rlogin family members, on the other hand, was that
they didn’t blindly repeat username and password prompts without
understanding what was going on. Instead, they remained involved
throughout the authentication process, and you could even write a file in
your home directory that instructed them to “simply let someone called john
in without a password when they try to connect from the asaph machine.”
System administrators and Unix users alike were given back hours each

month that they would have spent inputting their passwords otherwise.
Furthermore, rcp copying ten files from one system to another became
virtually as simple as copying them into a local folder. SSH has kept all of
the fantastic features of the early remote-shell protocol while adding
security and strong encryption that is trusted around the world for operating
mission-critical servers. This chapter will focus on the third-party paramiko
Python package, which can speak the SSH protocol and does so well that it
has been transferred to Java as well, because Java users wanted to be able to
use SSH as simply as we can with Python.

SSH: A Quick Overview
Then utilise it for one thing only—downloading a web page or sending an
e-mail—never attempting to do many things at once via a single socket.
When we get to SSH, we find a protocol that is so advanced that it
implements its own multiplexing. Several “information channels” can share
the same SSH socket. SSH labels every block of data it delivers across its
connection with a “channel” identification so that multiple conversations
can share the same socket. Subchannels are beneficial for at least two
reasons. First, while channel ID consumes a little amount of bandwidth for
each block of data sent, it is insignificant in comparison to the amount of
additional data SSH must send to negotiate and maintain encryption.
Second, channels make sense since the true cost of an SSH connection is
the time it takes to set it up. Host key negotiation and authentication can
take several seconds of actual time, and you want to be able to use the
connection for as many tasks as feasible once it’s established. You can
amortise the high cost of connecting by executing numerous activities
before letting the connection end, thanks to the SSH concept of a channel.
You can build a variety of channels once you’ve connected:

An interactive shell session, such as Telnet’s support
The execution of a single command in isolation.
A port forward that intercepts TCP connections
A file transfer session that allows you to access the remote filesystem

In the next sections, you’ll learn about all of these different types of
channels.

Host Keys for SSH
When an SSH client connects to a remote host for the first time, the two
exchange temporary public keys that allow them to encrypt the remainder
of their communication without giving any information to any onlookers.
The client then wants evidence of the remote server’s identity before
disclosing any more information. This makes logical as a first step: you
wouldn’t want SSH to reveal even your username, let alone your password,
if you were truly talking to a hacker’s software that had momentarily
managed to acquire a distant server’s IP.
Building a public-key infrastructure, as you saw in Chapter 6, is one
solution to the challenge of machine identity on the Internet. To begin, you
must identify a group of companies known as certificate authorities that will
be able to issue certificates. Then you install a list of their public keys in all
web browsers and other SSL clients that are currently available. Then those
businesses charge you money to verify that you are, in fact, Google.com (or
whoever you are) and that your Google.com SSL certificate deserves to be
signed. Finally, you can install the certificate on your web server, which
will ensure that everyone knows who you are.
From the standpoint of SSH, there are numerous issues with this method.
While it is true that you can create an internal public-key infrastructure in
which you distribute your own signing authority’s certificates to your web
browsers or other applications and then sign your own server certificates
without paying a third party, it is also true that you cannot sign your own
server certificates without paying a third party. For something like SSH, a
public-key infrastructure would still be a lengthy process. Server
administrators frequently desire to set up, use, and decommission servers
without first consulting a central authority.
As a result, SSH assumes that when a server is deployed, it generates a
random public-private key combination that is not signed by anyone.
Instead, one of two methods for key distribution is used.

A system administrator creates a script that collects all of an
organization’s host public keys, prepares an ssh known hosts file that
lists them all, and saves it to the /etc/sshd directory on each machine.
They may also make it available to any desktop clients, such as
Windows’ PuTTY command. Before they connect for the first time,

every SSH client will know about every SSH host key. Alternatively,
the administrator can simply forego knowing host keys in advance and
have each SSH client memorise them at the time of initial connection.

This will be familiar to SSH command-line users: the client claims it
doesn’t recognise the host to which you’re connecting, you answer “yes,”
and the client’s key is saved in your /.ssh/known hosts file. You have no
way of knowing if you’re talking to the host you believe you’re talking to
on the first meeting. Nonetheless, every future connection you make to that
machine will be assured to go to the appropriate spot and not to other
servers that someone is shifting into place at the same IP address (unless, of
course, the host’s keys have been stolen).
When the SSH command line encounters an unfamiliar host, it displays the
following prompt:
$ ssh dns.google
The authenticity of host ‘dns.google (8.8.8.8)’ can’t be
established.
RSA key fingerprint is
85:8f:32:4r:ac:1f:a9:bc:35:58:c1:d4:25:e3:c7:8c.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added ‘dns.google 8.8.8.8’ (RSA) to the
list of known hosts.

I wrote the yes answer buried deep on the next-to-last full line, providing
SSH permission to create the connection and remember the key for future
time. If SSH connects to a host and discovers a different key, it reacts
violently.
$ ssh dns.google
@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!

Someone could be eavesdropping on you right now (man-in-the-

middle attack)!

Anyone who has had to rebuild a server from the ground up and forgotten to
save their old SSH keys will recognise this warning. The freshly rebuilt host
will now use new keys created by the reinstall without them. It can be a
headache to go through all of your SSH clients and remove the problematic

old key so that they can learn the new one discreetly when they reconnect.
All of the standard SSH methods involving host keys are fully supported by
the paramiko library. Its default behaviour, on the other hand, is fairly
sparse. It does not load any host key files by default, therefore it must raise
an exception for the first host you connect to because it will be unable to
validate its key.
>>> import paramiko
>>> client = paramiko.SSHClient()
>>> client.connect(‘example.com’, username=’test’)
Traceback (most recent call last):
...

paramiko.ssh_exception.SSHException: Server ‘example.com’ not
found in known_hosts

Before connecting, load both the system and the current user’s known host
keys to make the connection act like a typical SSH command.
>>> client.load_system_host_keys()
>>> client.load_host_keys(‘/home/John/.ssh/known_hosts’)
>>> client.connect(‘example.com’, username=’test’)

You can also choose how to handle unknown hosts with the paramiko
library. Once you’ve established a client object, you can give it a decision-
making class that will be called when a host key isn’t recognised. By
inheriting from the MissingHostKeyPolicy class, you can create these
classes yourself.
>>> class AllowAnythingPolicy(paramiko.MissingHostKeyPolicy):
... def missing_host_key(self, client, hostname, key):
... return
...
>>> client.set_missing_host_key_policy(AllowAnythingPolicy())
>>> client.connect(‘example.com’, username=’test’)

It’s worth noting that the inputs to the missing host key() method provide
you with a variety of data points on which to base your judgement. You
could, for example, allow connections without a host key to computers on
your own server subnet but not to anyone else’s. There are various decision-
making classes in paramiko that already implement a number of
fundamental host key options.

paramiko.AutoAddPolicy: When you first see a host key, it is
immediately added to your user host key store (on Unix systems, the
file /.ssh/known hosts), but any further changes to the host key will
cause a fatal exception.
paramiko.RejectPolicy: When connecting to hosts with unknown
keys, an exception is thrown.
paramiko.WarningPolicy: When connecting to an unknown host, a
warning is logged, but the connection is allowed to continue.

When building an SSH script, I usually start by connecting to the remote
host “by hand” with the normal ssh command-line tool so that I can answer
“yes” to its prompt and acquire the remote host’s key in my host keys file.
This way, my programmes will never have to worry about dealing with a
missing key and will be able to exit with an error if one occurs. However, if
you prefer not to handle things by hand as much as I do, the AutoAddPolicy
might be your best option. It will never require human contact, but it will at
least confirm that you are conversing with the same machine on subsequent
occasions. Even if the computer is a Trojan horse that records all of your
contacts with it and surreptitiously records your password (if you use one),
it must at least show you that it has the same secret key every time you
connect.

Authentication with SSH
SSH authentication is the subject of a great quantity of solid documentation,
as well as papers and blog entries, all of which are freely available on the
Internet. There’s a lot of information out there on configuring common SSH
clients, setting up an SSH server on a Unix or Windows host, and utilising
public keys to authenticate yourself so you don’t have to type your
password every time. I’ll simply go through how authentication works
briefly because this chapter is largely about how to “speak SSH” from
Python. There are three common methods for proving your identity to a
remote server you’re communicating with over SSH.

You have the option of providing a username and password.
You can provide your client a username and then have them conduct a
public-key challenge-response successfully. This ingenious method

proves that you have a hidden “identification” key without actually
exposing its contents to a remote system.
Kerberos authentication is possible. If the remote system supports
Kerberos (which seems to be rare these days) and you’ve used the
kinit command-line tool to verify your identity with one of the master
Kerberos servers in the SSH server’s authentication domain, you
should be able to log in without a password.

We’ll focus on the first two because the third choice is uncommon. It’s
simple to utilise a username and password with paramiko; simply specify
them in your connect() method call.
>>> client.connect(‘example.com’, username=’john’,
password=abc12345)

The Python code is even easier with public-key authentication, where you
use ssh-keygen to generate a “identity” key pair (which is normally saved in
your /.ssh directory) that can be used to authenticate you without a
password.
‘my.example.com’ >>> client.connect(‘my.example.com’)

If your identity key file isn’t located in the standard /.ssh/id rsa directory,
you can manually supply its file name—or a Python list of file names—to
the connect() method.
>>> client.connect(‘my.example.com, key
filename=’/home/john/.ssh/id sysadmin’, key
filename=’/home/john/.ssh/id sysadmin’, key
filename=’/home/john/.ssh/id sysadmi

Of course, supplying a public-key identification like this will only work if
the public key in the id sysadmin.pub file has been attached to your
“authorised hosts” file on the remote end, which is normally titled
something like this:
/home/john/.ssh/authorized_keys

Always verify the file permissions on both your remote.ssh directory and
the files inside if you’re having difficulties getting public-key
authentication to work. If these files are group-readable or group-writable,
some versions of the SSH server will become angry. SSH is frequently
happiest when the.ssh directory is in mode 0700 and the files inside are in
mode 0600. In recent versions, the operation of copying SSH keys to other

accounts has been automated by a short script that ensures that the file
permissions are set correctly for you.
myaccount@example.com ssh-copy-id -i /.ssh/id rsa.pub

Once the connect() method has completed successfully, you can begin
executing remote activities, which will all be relayed over the same
physical socket without the need to renegotiate the host key, your identity,
or the encryption that secures the SSH connection.

Individual Commands and Shell Sessions
Once you have a connected SSH client, you have access to the complete
world of SSH activities. You can access remote-shell sessions, perform
specific commands, start file-transfer sessions, and set up port forwarding
simply by asking. You’ll go over each of these operations one by one. First,
SSH can create a raw shell session for you, which runs on the distant end
inside a pseudoterminal and allows programmes to communicate with the
user as they would at a terminal. This type of connection works similarly to
a Telnet connection. Listing 16-4 shows an example of sending a simple
echo command to a remote shell and then asking it to exit.

Listing 16-4. Using SSH to Run an Interactive Shell
#!/usr/bin/env python3
Programming in Python: The Basics.
Using SSH like Telnet: connecting and running two commands
import argparse, paramiko, sys
class AllowAnythingPolicy(paramiko.MissingHostKeyPolicy):

def missing_host_key(self, client, hostname, key):
return

def main(hostname, username):
client = paramiko.SSHClient()
client.set_missing_host_key_policy(AllowAnythingPolicy())
client.connect(hostname, username=username) # password=’’)
channel = client.invoke_shell()
stdin = channel.makefile(‘wb’)
stdout = channel.makefile(‘rb’)
stdin.write(b’echo Hello, world\rexit\r’)
output = stdout.read()

client.close()
sys.stdout.buffer.write(output)

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Connect over
SSH’)
parser.add_argument(‘hostname’, help=’Remote machine name’)
parser.add_argument(‘username’, help=’Username on the remote
machine’)
args = parser.parse_args()
main(args.hostname, args.username)

As you can see, this script exhibits the scars of a terminal-based software.
Instead of being able to elegantly encapsulate each of the two commands it
is issuing and separate their arguments, it must rely on the remote shell to
divide things up properly using spaces and carriage returns. This script is
created with the idea that you already have an identity file and a remote
authorized-keys file, so you won’t have to type a password. If you do, you
can use the commented-out password argument in the script to specify one.
You can have it call getpass(), as you did in the Telnet example, to avoid
inputting the password into your Python file. Also, if you run this
command, you’ll see that the commands you input are echoed twice, with
no easy way to distinguish between the command echoes and the real
command output.
Welcome to Ubuntu 13.10 (GNU/Linux 3.11.0-19-generic x86_64)
Last login: Wed mar 23 15:06:03 2019 from localhost
echo Hello, world
exit
test@john:~$ echo Hello, world
Hello, world
test@john:~$ exit
logout

Can you figure out what happened?
The command text was given to the remote host while it was still providing
its welcome messages because you did not pause and wait patiently for a
shell prompt before issuing the echo and exit commands (which would have
needed a loop doing repeated read() calls). The commands were written
directly beneath the “Last login” line because the Unix terminal is in a

“cooked” state by default, which means it echoes the user’s keystrokes. The
bash shell then began reading the commands character by character, setting
the terminal to raw mode because it prefers to provide its own command-
line editing interface Because it assumes you want to see what you’re doing
(despite the fact that you’ve already done typing and it’s just reading
characters from a buffer that’s several milliseconds old), it repeats each
command on the screen.
Of course, you’d have a hard time building a Python routine that could
separate the actual command output (the words Hello, world) from the rest
of the output you’re getting through the SSH connection without a lot of
parsing and intelligence. Because of all of these strange terminal-dependent
behaviours, you should only use invoke shell() if you’re developing an
interactive terminal programme that allows a live user to type commands..
exec command() is a far better alternative for performing remote commands
because it runs a single command rather than an entire shell session. It
allows you to manipulate the command’s standard input, output, and error
streams as if you were running it locally using the Standard Library’s
subprocess module.
A script illustrating its use is shown in Listing 16-5. The difference between
exec command() and a local subprocess (apart from the fact that the
command is executed on a remote computer!) is that you cannot give
command-line parameters to the remote server as separate strings. Instead,
you must give the entire command line to the remote shell for
interpretation.

Listing 16-5. Individual SSH Commands Execution
#!/usr/bin/env python3
Programming in Python: The Basics.
Running three separate commands, and reading three separate
outputs
import argparse, paramiko
class AllowAnythingPolicy(paramiko.MissingHostKeyPolicy):

def missing_host_key(self, client, hostname, key):
return

def main(hostname, username):
client = paramiko.SSHClient()
client.set_missing_host_key_policy(AllowAnythingPolicy())

client.connect(hostname, username=username) # password=’’)
for command in ‘echo “Hello, world!”’, ‘uname’, ‘uptime’:
stdin, stdout, stderr = client.exec_command(command)
stdin.close()
print(repr(stdout.read()))
stdout.close()
stderr.close()
client.close()

if __name__ == ‘__main__’:
parser = argparse.ArgumentParser(description=’Connect over
SSH’)
parser.add_argument(‘hostname’, help=’Remote machine name’)
parser.add_argument(‘username’, help=’Username on the remote
machine’)
args = parser.parse_args()
main(args.hostname, args.username)

Unlike all of our earlier Telnet and SSH conversations, this script will
receive the output of these three commands as completely separate streams
of data. There is no chance of confusing the output of one of the commands
with any of the others.
$ python3 ssh_commands.py localhost john
‘Hello, world!\n’
‘Linux\n’
‘15:30:18 up 5 days, 22:55, 5 users, load average: 0.79, 0.84,
0.71\n’

Aside from its security, SSH offers another significant benefit: the ability to
do semantically distinct operations on a distant machine without having to
establish separate connections.
If you need to quote command-line arguments so that spaces containing file
names and special characters are interpreted correctly by the remote shell,
you might find quotes() from the Python pipes module useful when building
command lines for the exec command() function, as mentioned in the
“Telnet” section earlier. Every time you invoke shell() or exec command()
to initiate a new SSH shell session or run a command, a new SSH “channel”
is generated behind the scenes to offer filelike Python objects that let you
talk to the remote command’s standard input, output, and error streams.

These channels run in parallel, and SSH skillfully interleaves their data on
your single SSH connection so that all talks take place at the same time and
are never confused.
A simple example of what is possible can be found in Listing 16-6. Two
command lines are started remotely, each of which is a simple shell script
with some echo commands and sleep pauses. You can pretend that they are
filesystem commands that return data as they walk the filesystem or that
they are CPU-intensive activities that generate and return results slowly if
you choose. SSH is unconcerned about differences. What matters is that
channels go dark for a few seconds before returning back to life as more
data becomes available.

Listing 16-6. SSH Channels Work in Simultaneous Mode
#!/usr/bin/env python3

Programming in Python: The Basics.

Running two remote commands simultaneously in different

channels

import argparse, paramiko, threading

class AllowAnythingPolicy(paramiko.MissingHostKeyPolicy):

def missing_host_key(self, client, hostname, key):

return

def main(hostname, username):

client = paramiko.SSHClient()

client.set_missing_host_key_policy(AllowAnythingPolicy())

client.connect(hostname, username=username) # password=’’)

def read_until_EOF(fileobj):

s = fileobj.readline()

while s:

print(s.strip())

s = fileobj.readline()

ioe1 = client.exec_command(‘echo One;sleep 2;echo Two;sleep

1;echo Three’)

ioe2 = client.exec_command(‘echo A;sleep 1;echo B;sleep

2;echo C’)

thread1 = threading.Thread(target=read_until_EOF, args=

(ioe1[1],))

thread2 = threading.Thread(target=read_until_EOF, args=

(ioe2[1],))

thread1.start()

thread2.start()

thread1.join()

thread2.join()

client.close()

if __name__ == ‘__main__’:

parser = argparse.ArgumentParser(description=’Connect over

SSH’)

parser.add_argument(‘hostname’, help=’Remote machine name’)

parser.add_argument(‘username’, help=’Username on the remote

machine’)

args = parser.parse_args()

main(args.hostname, args.username)

You start two threads and give each of them one of the channels to read
from in order to process these two streams of data at the same time. Both
output each new line of data as soon as it arrives and exit when the
readline() command returns an empty string to mark the end of the file.
When ran, this script should produce the following output:
$ python3 ssh_threads.py localhost john
One
A
B
Two
Three
C

As you can see, SSH channels on the same TCP connection are entirely
independent, can receive (and send) data at their own pace, and can close
separately when the command to which they’re talking ultimately ends. The
same may be said for the next two features you’ll be looking at: file transfer
and port forwarding.

SFTP (SSH File Transfer Protocol)
The SSH File Transfer Protocol (SFTP) is a subprotocol of the SSH
protocol that allows you to navigate the remote directory tree, create and

delete directories and files, and copy files from the local to the remote
machine. The capabilities of SFTP are so complex and comprehensive that
they can power graphical file browsers and even allow the distant
filesystem to be mounted locally! (For more information, look up the sshfs
system on the internet.)
The SFTP protocol is a huge help to those of us who used to have to copy
files using shaky scripts that sought to deliver data over Telnet by carefully
escaping binary data. Instead of forcing you to use its own sftp command
line every time you want to move files, SSH follows RSH’s lead and
provides a scp command-line tool that works similarly to cp but allows you
to prefix any file name with hostname: to indicate that it exists on the
remote system. This implies that remote copy commands are saved in your
command-line history among other shell commands, rather than being lost
in a separate history buffer of a separate command prompt that you must
invoke and then exit (which was a great annoyance of traditional FTP
clients). Furthermore, the SFTP, sftp, and scp commands not only offer
password authentication, but also allow you to copy files using the same
public-key technique that allows you to avoid typing your password over
and over when using the ssh command to conduct remote tasks.
You may get a decent understanding of the types of actions that SFTP
enables by skimming through Chapter 17 on the previous FTP system. In
fact, most SFTP operations have the same names as local commands you
already use to alter files on your Unix shell account, such as chmod and
mkdir, or have the same names as Unix system calls, such as lstat and
unlink, which you may be familiar with thanks to the Python os module.
Because these actions are so familiar, I never require anything more than
the bare paramiko documentation for the Python SFTP client at
www.lag.net/paramiko/docs/paramiko.SFTPClient-class when writing
SFTP commands.
The following are the most important factors to keep in mind when using
SFTP:

Just like FTP and your regular shell account, the SFTP protocol is
stateful. As a result, you can either supply all file and directory names
as absolute paths starting at the root of the filesystem, or you can use
getcwd() and chdir() to navigate the filesystem and then use relative
paths to the directory where you arrived.

http://www.lag.net/paramiko/docs/paramiko.SFTPClient-class

You can open a file using either the file() or open() methods (just how
Python has a built-in callable that goes by both names), and you’ll
obtain a filelike object that’s linked to an SSH channel that’s separate
from your SFTP channel. That is, you can continue to issue SFTP
instructions while moving around the filesystem and copying or
opening other files, and the original channel will remain linked to its
file and ready to read or write. File transfers can be done
asynchronously because each open distant file has its own channel.
You can open multiple distant files at the same time and have them all
stream down to your hard drive, or you can open new files and send
data back and forth.
Finally, keep in mind that no shell expansion is performed on any of
the file names you pass through SFTP. If you don’t recognise this, you
can open so many channels at once that each one slows to a crawl. If
you try to use a file name that starts with * or contains spaces or
special characters, they will be treated as part of the file name. When
using SFTP, there is no need for a shell. Thanks to support built within
the SSH server, you can talk directly to distant filesystems. This
means that if you wish to provide users with pattern matching support,
you’ll have to get the directory contents yourself and then check their
pattern against each one using a procedure like provided in fnmatch in
Python Standard Library.

A simple SFTP session is shown in Listing 16-7. It performs a simple task
that system administrators may need from time to time (although that they
may just as easily achieve with a scp command): it connects to the remote
system and copies message log files from the /var/log directory to the local
machine, possibly for scanning or analysis.

Listing 16-7. With SFTP, you can list a directory and fetch files.
#!/usr/bin/env python3

Programming in Python: The Basics.

Fetching files with SFTP

import argparse, functools, paramiko

class AllowAnythingPolicy(paramiko.MissingHostKeyPolicy):

def missing_host_key(self, client, hostname, key):

return

def main(hostname, username, filenames):

client = paramiko.SSHClient()

client.set_missing_host_key_policy(AllowAnythingPolicy())

client.connect(hostname, username=username) # password=’’)

def print_status(filename, bytes_so_far, bytes_total):

percent = 100. * bytes_so_far / bytes_total

print(‘Transfer of %r is at %d/%d bytes (%.1f%%)’ % (

filename, bytes_so_far, bytes_total, percent))

sftp = client.open_sftp()

for filename in filenames:

if filename.endswith(‘.copy’):

continue

callback = functools.partial(print_status, filename)

sftp.get(filename, filename + ‘.copy’, callback=callback)

client.close()

if __name__ == ‘__main__’:

parser = argparse.ArgumentParser(description=’Copy files over

SSH’)

parser.add_argument(‘hostname’, help=’Remote machine name’)

parser.add_argument(‘username’, help=’Username on the remote

machine’)

parser.add_argument(‘filename’, nargs=’+’, help=’Filenames to

fetch’)

args = parser.parse_args()

main(args.hostname, args.username, args.filename)

Although I made a big deal about how each file you open with SFTP has its
own independent channel, the simple get() and put() convenience functions
provided by paramiko, which are really lightweight wrappers for an open()
followed by a loop that reads and writes, do not attempt any asynchrony;
instead, they just block and wait until each entire file arrives. This implies
that the preceding script transfers one file at a time, resulting in output that
looks like this:
$ python sftp.py localhost john W-2.pdf miles.png
Transfer of ‘W-2.pdf’ is at 32768/115065 bytes (28.5%)
Transfer of ‘W-2.pdf’ is at 65536/115065 bytes (57.0%)
Transfer of ‘W-2.pdf’ is at 98304/115065 bytes (85.4%)
Transfer of ‘W-2.pdf’ is at 115065/115065 bytes (100.0%)

Transfer of ‘W-2.pdf’ is at 115065/115065 bytes (100.0%)
Transfer of ‘miles.png’ is at 15577/15577 bytes (100.0%)
Transfer of ‘miles.png’ is at 15577/15577 bytes (100.0%)

To observe the simple but entire set of file operations that SFTP provides,
visit the excellent paramiko documentation at the URL already provided.

Additional Features
I’ve just gone over all of the SSH operations that are provided via methods
on the basic SSHClient object in the last few sections. The more obscure
functions, such as remote X11 sessions and port forwarding, necessitate
going one level deeper in the paramiko interface and speaking directly to
the client’s “transport” object.
The transport class is responsible for understanding the low-level activities
that are used to fuel an SSH connection. You can quickly request
transportation from a client.
>>> client.get transport = transport ()

Though I don’t have space to go over all of the SSH features in this chapter,
the knowledge of SSH you gained in this chapter should help you
understand them given the paramiko documentation and example code—
whether from the paramiko project’s demos directory or from blogs, Stack
Overflow, or other online resources about paramiko.
SSH opens a port on either the local or remote host—at the very least,
making the port available to connections from localhost and possibly also
accepting connections from other machines on the Internet—and
“forwards” these connections across the SSH channel, where it connects to
another host and port on the remote end, passing data back and forth. Port
forwarding is a valuable feature. For example, I occasionally find myself
working on a web application that I can’t simply execute on my laptop
because it requires access to a database and other resources that can only be
found on a server farm. However, I may not want to go through the trouble
of running the programme on a public port, which may require adjusting
firewall rules to open, and then configuring HTTPS so that third parties
cannot see my work-in-progress. One simple option is to run the under-
construction web application on the distant development machine in the
same way that I would locally—listening on localhost:8080 so that it cannot

be visited from any computer—and then inform SSH that I want
connections to my local port 8080. made on my laptop, which will be
routed out so that people can connect to port 8080 on that local system.
$ ssh -L 8080:localhost:8080 devel.example.com

I have both terrible and good news for you if you need to create port
forwarding when using paramiko with an SSH connection. The bad news is
that because it enables more common operations like shell sessions, the top-
level SSHClient does not give a straightforward mechanism to build a
forward. Instead, you’ll have to write loops that transfer data in both
directions over the forward and then call directly to the “transport” object to
generate the forward. Of course, because the port-forward data is passed
back and forth across channels within the SSH connection, you don’t have
to worry if it’s raw, unprotected HTTP or other traffic that’s normally
visible to third parties; because it’s now embedded inside SSH, it’s
protected from being intercepted by its own encryption.

Conclusion
Remote-shell protocols allow you to connect to remote machines, perform
shell commands, and view the results as if they were running in a local
terminal window. These protocols are sometimes used to connect to a real
Unix shell, and other times they are used to connect to small, embedded
shells in routers or other networking hardware that needs to be configured.
When dealing with Unix commands, you should always be mindful of
output buffering, special shell characters, and terminal input buffering as
difficulties that might muck up your data or even cause your shell
connection to hang. The telnetlib module in the Python Standard Library
supports the Telnet protocol natively. Despite the fact that Telnet is old,
unsafe, and difficult to script, it may be the only protocol supported by the
simple devices you want to connect to. Not just for connecting to a remote
host’s command line, but also for transferring files and forwarding TCP/IP
ports, the Secure Shell protocol is the current state of the art. Thanks to the
third-party paramiko package, Python provides great SSH functionality.
Three things to keep in mind when setting up an SSH connection.

Paramiko will need to validate (or be expressly told to ignore) the
remote machine’s identity, which is specified as the host key present at
the time of connection.

Authentication will usually be done with a password or a public-
private key pair, the public half of which you have stored in the remote
server’s authorized keys file.
You can start all kinds of SSH services—remote shells, individual
commands, and file-transfer sessions—after you’ve been
authenticated, and they’ll all run at the same time without you having
to open new SSH connections, thanks to the fact that they’ll each get
their own “channel” within the master SSH connection.

The File Transmission Protocol, on which SFTP was based, is an older and
less powerful protocol for file transfer that dates back to the early days of
the Internet.

CHAPTER 17
File Transfer Protocol (FTP)

FTP (File Transmit Protocol) was previously one of the most extensively
used Internet protocols, with users using it to transfer data between
computers connected to the Internet. Unfortunately, the protocol has seen
better days, and there is now a better option for each of its primary tasks.
FTP was originally used to fuel four basic activities. FTP was first and
mostly used for file downloads. Users linked to “anonymous” FTP sites that
permitted public access to retrieve documents, source code for new
programmes, and media such as photos or videos. (You logged in with the
login “anonymous” or “ftp,” and then typed your e-mail address as the
password out of courtesy, so they’d know who was using their bandwidth.)
Because transferring huge files with Telnet clients was frequently a risky
undertaking, FTP was always the protocol of choice when files were to be
moved across computer accounts.
Second, FTP was frequently hacked to allow for anonymous uploading.
Many organisations wanted outsiders to be able to submit documents or
files, so they set up FTP servers that allowed files to be written into
directories with no way of retrieving the contents. Users would not be able
to see (or, presumably, guess!) the names of the files that other users had
just submitted, allowing them to access them before the site administrators.
Third, the protocol was frequently used to enable the synchronisation of
whole file trees between different computer accounts. Users could shift
entire directory trees from one of their accounts to another using a client
that supported recursive FTP operations, and server administrators could
clone or install new services without having to rebuild them from the
ground up on a new computer. Users were typically unaware of how the
actual protocol operated or the numerous instructions required to transfer so
many distinct files while using FTP in this manner: Instead, they pressed a
button, which launched a big batch operation that completed the process.

Finally, FTP was utilised for what it was designed for: interactive, full-
featured file management. Early FTP clients had a command-line prompt
that resembled a Unix shell account, and the protocol borrows both the
concept of a “current working directory” and the cd command to move
from one directory to another from shell accounts, as I’ll describe. Later
clients imitated the Mac-like interface by drawing folders and files on the
computer screen. In either event, the full capabilities of FTP were finally
put to use in the activity of file-system browsing: It let you to do things like
create and delete folders, change file permissions, and rename files in
addition to listing directories and uploading and downloading files.

Structure:
What to Do If You Can’t Use FTP
Channels of Communication
In Python, how to use FTP
Binary and ASCII Files
Binary Downloading (Advanced)
Data Uploading
Uploading Binary Data in an Advanced Way
Error Handling
Searching via directories
Detecting Directories and Downloading in Recursive Mode
Creating and deleting directories
Using FTP in a Secure Manner
Conclusion

Objectives:
This chapter is beneficial if you have a legacy system and need to
communicate with it through FTP from your Python software, or if you
want to learn more about file transfer protocols in general, and FTP is a
solid, historical place to start.

What to Do If You Can’t Use FTP
There are now better alternatives to the FTP protocol for almost everything
you could possibly wish to do with it. You’ll still come across URLs that
begin with ftp:/ now and then, but they’re becoming increasingly rare.. The
protocol’s major flaw is its lack of security: not only files, but also
usernames and passwords are delivered in clear text and can be seen by
anybody watching network traffic. Another difficulty is that an FTP user
frequently establishes a connection, selects a working directory, and
performs multiple activities using the same network connection. With
millions of users, modern Internet services prefer protocols like HTTP (see
Chapter 9) that allow users to send brief, self-contained queries rather than
long-running FTP sessions that require the server to remember things like
the current working directory.
The security of file systems is a final major concern. Early FTP servers
tended to expose the full file system, allowing users to cd to / and spy about
to discover how the system was configured, rather than just a fragment of
the host file system that the owner desired accessible. True, you might
operate the server as a distinct ftp user and deny that user access to as many
files as possible; however, many parts of the Unix file system must be
publically accessible just so that ordinary users can use the programmes
there.
So, what are your options?

On today’s Internet, HTTP (see Chapter 9) is the standard protocol for
file downloads, which is secured with SSL when appropriate. HTTP
offers system-independent URLs rather than exposing system-specific
file naming conventions as FTP does.
Anonymous upload is less common, but the general trend is to use a
form on a web page that instructs the browser to use an HTTP POST
operation to send the file selected by the user.
Since the days when a recursive FTP file copy was the only option to
get files to another machine, file synchronisation has vastly improved.
Instead of copying every file, contemporary procedures like rsync or
rdist compare files on both ends of the connection and copy just the
ones that have changed or are new. (If you can’t find these instructions
in this book, try Googling them.) Nonprogrammers are more likely to

use the Dropbox service, which is powered by Python, or any of the
rival “cloud drive” services that huge carriers currently provide.
The only area where FTP is still widely used on the Internet today is
for full file-system access: Despite its lack of security, thousands of
low-cost ISPs continue to accept FTP. Users can copy their media and
(usually) PHP source code into their online account using this method.
Today, service providers would be much better off supporting SFTP
instead (see Chapter 16).

The FTP standard is RFC 959, available at www.faqs.org/rfcs/rfc959.html.

Channels of Communication
FTP is unusual in that it uses two TCP connections by default when it
operates. The control channel is one of the connections, and it transports
commands as well as acknowledgments or error codes. The data channel is
the second link, which is primarily for delivering file data or other data
blocks such as directory listings. The data channel is completely duplex,
which means that files can be transferred in both directions at the same
time. In practise, however, this capability is rarely employed.
The procedure for downloading a file from an FTP server in typical
operations is as follows:

1. The FTP client first establishes a command connection by connecting
to the server’s FTP port.

2. The client verifies its identity using a username and password.
3. The client navigates to the server’s directory where it wishes to

deposit or retrieve files.
4. For the data connection, the client starts listening on a new port and

then informs the server about it.
5. The server establishes a connection to the port that the client has

established.
6. The file is sent out.
7. The data connection has been terminated.

In the early days of the Internet, this idea of the server connecting back to
the client worked effectively since practically every system that could run

http://www.faqs.org/rfcs/rfc959.html

an FTP client had a public IP address, and firewalls were uncommon.
However, today’s situation is more complicated. Incoming connections to
desktop and laptop computers are now frequently blocked by firewalls.

In Python, how to use FTP
For Python programmers, the ftplib Python module is the principal interface
to FTP. It takes care of the technicalities of setting up the various
connections for you, as well as providing easy ways to automate basic
actions.
If you merely want to download files, the urllib2 module from Chapter 1
supports FTP and may be more convenient to use for simple download
activities; simply execute it with an ftp:/ URL. I discuss ftplib in this
chapter since it has FTP-specific functionality that aren’t present in urllib2.
A very basic ftplib example is shown in Listing 17-1. The application
establishes a connection to a remote server, outputs the current working
directory, and displays the welcome message.

Listing 17-1. Creating a Basic FTP Connection
#!/usr/bin/env python3
Programming in Python: The Basics.
from ftplib import FTP
def main():

ftp = FTP(‘ftp.ibiblio.org’)
print(“Welcome:”, ftp.getwelcome())
ftp.login()
print(“Current working directory:”, ftp.pwd())
ftp.quit()

if __name__ == ‘__main__’:
main()

The welcome message will usually contain no information that your
software may utilise, but if a user is calling your client interactively, you
might wish to show it. The login() function accepts multiple parameters,
including a username, password, and a third authentication token called a
“account” by FTP. It was called without parameters in this case, causing the
user to log in as “anonymous” with a generic password. Remember that an
FTP session can visit many directories, just like a shell prompt can use cd to

change destinations. The pwd() function returns the current working
directory on the connection’s remote site in this case. Finally, the quit()
function logs out of the connection and closes it. When the programme is
executed, the following is what it produces:
$./connect.py
Welcome: 220 ProFTPD Server (Bring it on...)
Current working directory: /

Binary and ASCII Files
When making an FTP transfer, you must determine whether you want the
file to be processed as a monolithic block of binary data or as a text file so
that your local system may paste the lines back together using whatever
end-of-line character your platform supports. When you ask Python 3 to
work in text mode, it expects and returns plain strings, but if you’re dealing
with binary file data, it expects and returns byte strings. A file sent in
ASCII mode is delivered one line at a time to your software, and it’s
delivered without line endings, so you’ll have to manually glue the lines
back together. Listing 17-2 shows a Python programme that downloads and
saves a well-known text file to your local directory.

Listing 17-2. Obtaining an ASCII File Downloading an ASCII File
#!/usr/bin/env python3

Programming in Python: The Basics.

Downloads README from remote and writes it to disk.

import os

from ftplib import FTP

def main():

if os.path.exists(‘README’):

raise IOError(‘refusing to overwrite your README file’)

ftp = FTP(‘ftp.kernel.org’)

ftp.login()

ftp.cwd(‘/pub/linux/kernel’)

with open(‘README’, ‘w’) as f:

def writeline(data):

f.write(data)

f.write(os.linesep)

ftp.retrlines(‘RETR README’, writeline)

ftp.quit()

if __name__ == ‘__main__’:

main()

The cwd() function in the listing selects a new working directory on the
remote machine. The transfer is then started using the retrlines() function.
Its first parameter indicates a remote command to run, commonly RETR,
followed by a file name. The second parameter is a function that is run
repeatedly as each line of the text file is fetched; if this parameter is
omitted, the data is simply sent to standard output. Because the lines are
given without the end-of-line character, your system’s regular line ending is
appended to each line as it is printed out by the handmade writeline()
function. Try executing this programme; when it’s finished, you should see
a file titled README in your current directory. Basic binary file transfers
work similarly to text file transfers. This is demonstrated in Listing 17-3.

Listing 17-3. Obtaining a Binary File
#!/usr/bin/env python3
Programming in Python: The Basics.
import os
from ftplib import FTP
def main():

if os.path.exists(‘patch8.gz’):
raise IOError(‘refusing to overwrite your patch8.gz file’)

ftp = FTP(‘ftp.kernel.org’)
ftp.login()
ftp.cwd(‘/pub/linux/kernel/v1.0’)
with open(‘patch8.gz’, ‘wb’) as f:
ftp.retrbinary(‘RETR patch8.gz’, f.write)

ftp.quit()
if __name__ == ‘__main__’:
main()

When you start this application, it creates a patch8.gz file in your current
working directory. The retrbinary() function simply transfers data blocks to
the function given. This is advantageous because the write() function of a
file object expects data, thus no special function is required in this situation.

Binary Downloading (Advanced)
ntransfercmd is a second function in the ftplib module that can be used to
download binary files (). This command has a more basic UI, but it can be
handy if you want to know more about what’s going on during the
download. This more complex command, in particular, allows you to keep
track of the number of bytes sent and use that information to show the user
status updates. A sample programme using ntransfercmd is shown in
Listing 17-4. ().

Listing 17-4. Download a binary file containing status updates
#!/usr/bin/env python3
Programming in Python: The Basics.
import os, sys
from ftplib import FTP
def main():

if os.path.exists(‘linux-1.0.tar.gz’):
raise IOError(‘refusing to overwrite your linux-1.0.tar.gz
file’)

ftp = FTP(‘ftp.kernel.org’)
ftp.login()
ftp.cwd(‘/pub/linux/kernel/v1.0’)
ftp.voidcmd(“TYPE I”)
socket, size = ftp.ntransfercmd(“RETR linux-1.0.tar.gz”)
nbytes = 0
f = open(‘linux-1.0.tar.gz’, ‘wb’)
while True:
data = socket.recv(2048)
if not data:

break
f.write(data)
nbytes += len(data)
print(“\rReceived”, nbytes, end=’ ‘)
if size:

print(“of %d total bytes (%.1f%%)”
% (size, 100 * nbytes / float(size)), end=’ ‘)
else:
print(“bytes”, end=’ ‘)

sys.stdout.flush()
print()
f.close()
socket.close()
ftp.voidresp()
ftp.quit()

if __name__ == ‘__main__’:
main()

There are a few new items to take note of in this section. The first is the use
of voidcmd (). This sends an FTP command to the server and checks for
errors, but it doesn’t return anything. TYPE I is the raw command in this
scenario. This changes the transfer mode to “image,” which is the internal
FTP term for binary files. The higher-level retrbinary() ran this command
behind the scenes in the preceding example, but the lower-level
ntransfercmd() did not.
Next, notice that ntransfercmd() provides a tuple that includes a data socket
and a size estimate. Always keep in mind that the file size is only an
estimate and should not be taken as gospel; the file could end sooner or last
considerably longer than this amount. In addition, if a size estimate from
the FTP server is unavailable, the estimated size returned will be None.
The object datasock is a standard TCP socket with all of the characteristics
specified in Part 1 of this book (see Chapter 3 in particular). A simple loop
in this example uses recv() until it has read all of the data from the
connection, writing it to disc and printing status updates to the screen along
the way.
There are two things to notice about the status updates that Listing 17-4
prints on the screen. Rather than printing a scrolling list of lines that
disappear out of the top of the terminal, each line starts with a carriage
return ‘r,’ which moves the cursor back to the left edge of the terminal,
overwriting the previous status line and giving the impression of an
increasing, animated percentage. Second, because you’re telling each print
statement to end each line with a space rather than a new line, you’re never
letting it finish a line of output, so you’ll need to flush() the standard output
to ensure that the status updates reach the screen right away.
It’s critical to terminate the data socket and execute voidresp() after
receiving the data, which receives the command response code from the

server and raises an exception if there was a problem during transmission.
Even if you don’t care about detecting problems, forgetting to execute
voidresp() will almost certainly result in future commands failing because
the server’s output socket will be blocked while you read the data.
Here’s an example of what you’ll get if you execute this programme:
$./advbinarydl.py
Received 1259161 of 1259161 bytes (100.0%)

Data Uploading
FTP can also be used to upload file data. Uploading uses the same two basic
operations as downloading: storbinary() and storlines (). Both require the
execution of a command and the transmission of a file-like object. The
storbinary() function, on the other hand, continuously calls the read()
method on that object until its content is exhausted, whereas storlines() calls
the readline() method. These methods, unlike the analogous download
functions, do not need you to provide your own callable function.
(However, you might supply a custom file-like object whose read() or
readline() method computes the outgoing data as the transmission
progresses!)
Listing 17-5 demonstrates how to upload a binary file.

Listing 17-5. Upload a binary file
#!/usr/bin/env python3
Programming in Python: The Basics.
from ftplib import FTP
import sys, getpass, os.path
def main():

if len(sys.argv) != 5:
print(“usage:”, sys.argv[0],

“<host> <username> <localfile> <remotedir>”)
exit(2)

host, username, localfile, remotedir = sys.argv[1:]
prompt = “Enter password for {} on {}: “.format(username,
host)
password = getpass.getpass(prompt)
ftp = FTP(host)

ftp.login(username, password)
ftp.cwd(remotedir)
with open(localfile, ‘rb’) as f:
ftp.storbinary(‘STOR %s’ % os.path.basename(localfile), f)

ftp.quit()
if __name__ == ‘__main__’:
main()

This programme appears to be very similar to previous efforts. You’ll need
to find a server someplace to test it against because most anonymous FTP
sites don’t allow file uploads; I simply installed the old, venerable ftpd on
my laptop for a few minutes and performed the test like this:
$ python binaryul.py localhost john test.txt /tmp

At the popup, I typed in my password (john is my username on this
machine). When the application finished, I double-checked and found a
copy of the test.txt file in /tmp. Remember that FTP does not encrypt or
secure your password, so don’t try this over the network to another
machine! Simply change storbinary() to storlines() in this programme to
upload a file in ASCII style ()

Uploading Binary Data in an Advanced Way
Listing 17-6 shows how to upload files manually using ntransfercmd(), just
as there was a complicated raw version of the download procedure.

Listing 17-6. Uploading Files Block by Block
#!/usr/bin/env python3
Programming in Python: The Basics.
import os, sys
from ftplib import FTP
def main():

if os.path.exists(‘linux-1.0.tar.gz’):
raise IOError(‘refusing to overwrite your linux-1.0.tar.gz
file’)
ftp = FTP(‘ftp.kernel.org’)
ftp.login()
ftp.cwd(‘/pub/linux/kernel/v1.0’)
ftp.voidcmd(“TYPE I”)

socket, size = ftp.ntransfercmd(“RETR linux-1.0.tar.gz”)
nbytes = 0
f = open(‘linux-1.0.tar.gz’, ‘wb’)
while True:

data = socket.recv(2048)
if not data:
break

f.write(data)
nbytes += len(data)
print(“\rReceived”, nbytes, end=’ ‘)
if size:
print(“of %d total bytes (%.1f%%)”

% (size, 100 * nbytes / float(size)), end=’ ‘)
else:
print(“bytes”, end=’ ‘)

sys.stdout.flush()
print()
f.close()
socket.close()
ftp.voidresp()
ftp.quit()

if __name__ == ‘__main__’:
main()

When you’re done with the transfer, the first thing you should do is contact
datasock. close(). When you’re uploading data, closing the socket tells the
server that it’s time to stop! If you do not stop the data socket after
uploading all of your data, the server will continue to wait for the remaining
data. You may now perform an upload that updates its status as it
progresses:
$ python binaryul.py localhost john patch8.gz /tmp
Enter password for john on localhost:
Sent 6408 of 6408 bytes (100.0%)

Error Handling
When an error occurs, ftplib, like most Python modules, will throw an
exception. It has its own set of exceptions and can also raise socket.error

and IOError. It provides a tuple named ftplib.all errors that lists all of the
exceptions that ftplib can possibly raise as a convenience. When writing a
try...except clause, this is a common shortcut. One of the issues with the
simple retrbinary() function is that, in order to utilise it efficiently, you’ll
almost always end up opening the file locally before starting the remote
transfer. If the file you’re looking for doesn’t exist when you issue a
command to the remote side, Alternatively, if the RETR command fails,
you must shut and remove the local file you just created (or else wind up
littering the file system with zero-length files). By comparison, you can use
the ntransfercmd() function to check for errors before opening a local file.
These requirements are already followed in Listing 17-6: If ntransfercmd()
fails, the application will exit before the local file is opened due to the
exception.

Searching via directories
FTP offers two methods for learning about server files and directories. The
nlst() and dir() methods in ftplib implement these. The nlst() method returns
a list of entries in a directory, which includes all files and directories.
However, all that is returned is a list of names. There is no more
information regarding which entries are files or folders, file sizes, or
anything else.
The more sophisticated dir() function retrieves a remote directory listing.
The format of this listing is system-defined, however it normally includes a
file name, size, modification date, and file type. It’s usually the result of one
of these two shell commands on Unix servers:
$ ls -l
$ ls –la

The output of dir can be used by Windows servers. Although the output
may be beneficial to an end user, the many output formats make it difficult
for a software to employ. Some clients who require this information write
parsers for the numerous distinct formats that ls and dir generate between
machines and operating system versions, while others can only parse the
format in use at the time. Using nlst() to acquire directory information is
demonstrated in Listing 17-7.

Listing 17-7. Obtaining a No-Frills Directory Listing

#!/usr/bin/env python3
Programming in Python: The Basics.
from ftplib import FTP
def main():

ftp = FTP(‘ftp.ibiblio.org’)
ftp.login()
ftp.cwd(‘/pub/academic/astronomy/’)
entries = ftp.nlst()
ftp.quit()
print(len(entries), “entries:”)
for entry in sorted(entries):
print(entry)

if __name__ == ‘__main__’:
main()

When you run this program, you will see output like this:
$ python nlst.py
13 entries:
INDEX
README
ephem_4.28.tar.Z
hawaii_scope
incoming
jupitor-moons.shar.Z
lunar.c.Z
lunisolar.shar.Z
moon.shar.Z
planetary
sat-track.tar.Z
stars.tar.Z
xephem.tar.Z

The same files would be listed if you manually logged in to the host using
an FTP client. When you use another file listing command, as shown in
Listing 17-8, the output will be different.

Listing 17-8. Obtaining a Prestigious Directory Listing
#!/usr/bin/env python3
Programming in Python: The Basics.

from ftplib import FTP
def main():

ftp = FTP(‘ftp.ibiblio.org’)
ftp.login()
ftp.cwd(‘/pub/academic/astronomy/’)
entries = []
ftp.dir(entries.append)
ftp.quit()
print(len(entries), “entries:”)
for entry in entries:
print(entry)

if __name__ == ‘__main__’:
main()

There is no more information, but the file names are in a useful format for
automated processing—a simple list of file names. Compare the output
from Listing 17-8, which utilises dir(), to the basic list of file names you
saw earlier:
$ python dir.py
13 entries:
-rw-r--r-- 1 (?) » (?) » » 750 Feb 14 1994 INDEX
-rw-r--r-- 1 root » bin » » 135 Feb 11 1999 README
-rw-r--r-- 1 (?) » (?) » 341303 Oct 2 1992 ephem_4.28.tar.Z
drwxr-xr-x 2 (?) » (?) » » 4096 Feb 11 1999 hawaii_scope
drwxr-xr-x 2 (?) » (?) » » 4096 Feb 11 1999 incoming
-rw-r--r-- 1 (?) » (?) » » 5983 Oct 2 1992 jupitor-
moons.shar.Z
-rw-r--r-- 1 (?) » (?) » » 1751 Oct 2 1992 lunar.c.Z
-rw-r--r-- 1 (?) » (?) » » 8078 Oct 2 1992 lunisolar.shar.Z
-rw-r--r-- 1 (?) » (?) » » 64209 Oct 2 1992 moon.shar.Z
drwxr-xr-x 2 (?) » (?) » » 4096 Jan 6 1993 planetary
-rw-r--r-- 1 (?) » (?) » 129969 Oct 2 1992 sat-track.tar.Z
-rw-r--r-- 1 (?) » (?) » » 16504 Oct 2 1992 stars.tar.Z
-rw-r--r-- 1 (?) » (?) » 410650 Oct 2 1992 xephem.tar.Z

The dir() method takes a function and calls it for each line, delivering the
directory listing in bits like retrlines() does for specific files. The append()
method of the simple old Python entries list is used here.

Detecting Directories and Downloading in
Recursive Mode
How will you differentiate directories from normal files if you can’t predict
what information an FTP server will provide from its dir() command? This
is a critical step when downloading large trees of files from the server.
The only guaranteed answer, as demonstrated in Listing 17-9, is to attempt
inserting a cwd() into every name returned by nlst() and, if successful, infer
that the object is a directory! This sample software does not really
download anything; instead, it writes out the folders it accesses to the
screen to keep things simple (and not to swamp your drive with sample
data).

Listing 17-9. attempting to recurse across directories.
#!/usr/bin/env python3
Programming in Python: The Basics.
from ftplib import FTP, error_perm
def walk_dir(ftp, dirpath):

original_dir = ftp.pwd()
try:
ftp.cwd(dirpath)
except error_perm:
return # ignore non-directores and ones we cannot enter

print(dirpath)
names = sorted(ftp.nlst())
for name in names:
walk_dir(ftp, dirpath + ‘/’ + name)

ftp.cwd(original_dir) # return to cwd of our caller
def main():

ftp = FTP(‘ftp.kernel.org’)
ftp.login()
walk_dir(ftp, ‘/pub/linux/kernel/Historic/old-versions’)
ftp.quit()

if __name__ == ‘__main__’:
main()

This sample programme will be a little slow at first—there are a lot of files
in the previous version’s directory on the Linux kernel archive, as it turns

out—but after a few dozen seconds, you should see the following directory
tree on the screen:
$ python recursedl.py
/pub/linux/kernel/Historic/old-versions
/pub/linux/kernel/Historic/old-versions/impure
/pub/linux/kernel/Historic/old-versions/old
/pub/linux/kernel/Historic/old-versions/old/corrupt
/pub/linux/kernel/Historic/old-versions/tytso

You might supplement this list of folders by displaying each of the files that
the recursive process is (slowly) discovering by adding a few print
statements. Furthermore, you may download the files themselves to
appropriate directories that you create locally by adding a few more lines of
code. However, the only truly necessary logic for a recursive download is
already included in Listing 17-9: however, the only guaranteed way to
determine whether an entry is a directory that you are permitted to access is
to use cwd() against it.

Creating and deleting directories
Finally, FTP allows for the deletion of files as well as the creation and
deletion of directories. The ftplib documentation covers all of these more
obscure calls:

delete(filename) is a command that deletes a file from a server.
The command mkd(dirname) tries to make a new directory.
rmd(dirname) deletes a directory; most systems require that the
directory be empty first.
rename(oldname, newname) operates similarly to the Unix
command mv: the file is essentially renamed if both names are in the
same directory; however, if the destination specifies a name in a
different directory, the file is truly relocated.

These instructions, like all other FTP operations, are executed as if you
were actually signed on to the remote server command line with the same
username that you used to log in to the FTP. FTP may be used to support
file browser apps that allow users to drag and drop files and folders between
their local system and the remote host thanks to these final few commands.

Using FTP in a Secure Manner
Though I mentioned at the start of this chapter that there are far better
protocols to use for pretty much anything you could do with FTP, especially
the robust and secure SFTP extension to SSH (see Chapter 16), I should be
fair and mention that a few FTP servers support TLS encryption (see
Chapter 6) and that Python’s ftplib does provide this protection if you want
to use it. Create your FTP connection with the FTP TLS class instead of the
normal FTP class if you want to use TLS. Simply by doing so, you will
protect your login and password, as well as the entire FTP command
channel, from prying eyes. The FTP data connection will be protected as
well if you call the class’s prot p() method (which accepts no arguments).
There is a prot c() method that returns the data stream to normal if you want
to use an unencrypted data connection during the session for some reason.
Once again, as long as you’re using the FTP TLS class, your commands
will be secure. If you need more information about this FTP extension, go
visit http://docs.python.org/3/library/ftplib.html. in the Python Standard
Library documentation (which includes a tiny code sample).

Conclusion
FTP allows you to transmit files between your computer’s client and a
remote FTP server. Despite the fact that the protocol is insecure and
antiquated when compared to better options such as SFTP, you may still
encounter services and machines that demand you to utilise it. The ftplib
package in Python is used to communicate with FTP servers.
Binary and ASCII transfers are supported by FTP. Text files are generally
sent via ASCII transfers, which allow line endings to be changed while the
file is being transferred. For everything else, binary transfers are used. The
retrlines() function downloads a file in ASCII mode, whereas the
retrbinary() function downloads a file in binary mode. You can also use a
remote server to upload files. The storlines() and storbinary() functions
upload files in ASCII and binary modes, respectively. For binary uploads
and downloads, use the ntransfercmd() function. It allows you more control
over the transfer process and is frequently used to show the user a progress
bar. On errors, the ftplib module throws exceptions. To capture any errors
that it may throw, use the special tuple ftplib.all errors.

http://docs.python.org/3/library/ftplib.html

On the remote end, you can use cwd() to change to a certain directory. The
nlst() command gives a simple list of all files and directories in a given
directory. The dir() command produces a more thorough list, but it is
formatted for the server. Even if you only have nlst(), you can typically tell
if an entry is a file or directory by trying to change to it with cwd() and
seeing if you get an error. In the next chapter, we’ll move on from simple
file transfers to the more general activity of running a remote procedure on
another server and receiving typed data back instead of raw strings.

CHAPTER 18
Remote Procedure Call (RPC)

RPC systems allow you to call functions in another process or on a remote
server using the same syntax you’d use to call a procedure in a local API or
library. This comes in use in two situations:

You need data or information that is only available on another hard
drive or network, and an RPC interface lets you easily send queries to
another system to get back an answer without having to change the
code that is making the call, which is now remote.
You need data or information that is only available on another hard
drive or network, and an RPC interface lets you easily send queries to
another system to get back an answer without having to change the
code that is making the call, which is now remote.

The original remote procedure systems were primarily written in low-level
languages such as C. When one C function called another, they placed bytes
on the network that looked very similar to the bytes already being pushed
into the processor stack. RPC calls could not be made without knowing how
the data would be serialised ahead of time, just as a C programme could not
safely call a library function without a header file that specified it exactly
how to lay out the method’s inputs in memory (any errors often resulted in a
crash). In actuality, each RPC payload appeared to be a block of binary data
formatted using the Python struct module, which was explained in Chapter
5. However, because today’s machines and networks are fast enough, we
frequently trade some memory and performance for protocols that are more
reliable and require less coordination between two pieces of code in
dialogue.
Earlier RPC protocols would have sent a stream of bytes that looked
something like this:
0, 0, 0, 1, 64, 36, 0, 0, 0, 0, 0, 0

It would have been up to the receiver to decode the 12 bytes to the values
“integer 1” and “float 10.0” after learning that the function’s parameters are
a 32-bit integer and a 64-bit floating point number. Modern RPC protocols,
on the other hand, use self-documenting formats like XML, which are
designed in such a way that it’s nearly hard to understand the arguments as
anything but an integer and a floating-point number:
<params>
<param><value><i4>41</i4></value></param>
<param><value><double>10.</double></value></param>

</params>

12 bytes of actual binary data have ballooned into 108 bytes of protocol that
must be generated by the sender and then interpreted on the receiving end,
taking hundreds of CPU (Central Processing Unit) cycles. Nonetheless, the
cost of eliminating ambiguity in procedures is often regarded as justified.
Of course, a more current payload type than XML, such as JSON
(JavaScript Object Notation), can be used to convey the above pair of
values with less verbosity.
[1,10.0]

However, you can see that clear textual representation has replaced the
traditional practise of delivering raw binary data whose meaning had to be
understood ahead of time in both circumstances. Of course, by this time,
you’re probably wondering what makes RPC protocols so unique. After all,
the options I’m discussing here—choosing a data format, submitting a
request, and receiving a response—aren’t exclusive to procedure calls; they
apply to any significant network protocol! To use two examples from
previous chapters, both HTTP and SMTP must serialise data and specify
message formats. So, once again, you could wonder what makes RPC so
unique. Three characteristics distinguish protocol as an RPC example.
The lack of strong semantics for the meaning of each call distinguishes an
RPC protocol. Whereas HTTP is used to retrieve documents and SMTP is
used to send messages, an RPC protocol does not attach any meaning to the
data it receives other than to support fundamental data types like integers,
floats, characters, and lists. Instead, it’s up to each every API you create
with an RPC protocol to describe what its calls signify. Second, RPC
mechanisms provide a means of invoking methods without defining them.
When you read the specification of a protocol that serves a particular

purpose, such as HTTP or SMTP, it’s easy to see why. you’ll notice that
they describe a limited set of basic operations, such as GET and PUT for
HTTP and EHLO and MAIL for SMTP. RPC mechanisms, on the other
hand, leave it up to you to define the verbs or function calls that your server
will support; they don’t pre-define them.
Third, while using RPC, your client and server code should resemble any
other code that makes use of function calls. The only pattern you might find
in the code is a certain caution with respect to the objects that are passed—
lots of numbers, texts, and lists, but often not live objects like open files—
unless you know that an object represents a remote server. While the kind
of parameters that can be given may be limited, the function calls will “look
regular” and will not require any additional decoration or elaboration to
pass over the network.

Structure:
RPC’s characteristics
XML-RPC
JSON-RPC
Data that Documents Itself
Talking About Objects: Pyro and RPyC
An RPyC Example
Message Queues, RPC, and Web Frameworks
Errors in the Network: How to Recover
Conclusion

Objectives:
In these chapter we’ll learn about how to recover while having errors in the
network and message queues,RPC’s characters, and web frameworks.

RPC’s characteristics
RPC protocols include some critical features, as well as some differences,
that you should bear in mind when choosing and subsequently deploying an

RPC client or server. They allow you to make what appear to be local
function or method calls, but are actually passed across the network to a
different server. To begin with, every RPC protocol has a limit on the type
of data that can be passed. In reality, because they are meant to function
with a variety of programming languages, the most general-purpose RPC
mechanisms tend to be the most limiting, as they can only support the
lowest-common-denominator features that present in practically all of them.
As a result, the most widely used protocols only offer a few types of
numbers and texts, as well as one sequence or list data type and something
like a struct or associative array. Because so few other languages provide
keyword arguments at this stage, many Python programmers are unhappy to
realise that only positional arguments are commonly supported.
When an RPC mechanism is not bound to a programming language, it can
support a broader range of parameters. Even live objects can be sent in
some circumstances if the protocol can figure out a method to reconstruct
them on the remote side. Only objects backed by live operating system
resources, such as an open file, live socket, or shared memory area, can be
passed over the network in this situation. The ability of the server to signal
that an exception occurred while it was running the remote function is a
second common characteristic. In such instances, the client RPC library
would usually throw an exception to inform the caller that something went
wrong. Of course, live stack frames like the ones Python provides to
exception handlers can’t be returned; each stack frame, after all, most likely
refers to modules that don’t exist in the client programme. When a call to
the server fails, at the very least, a proxy exception with the appropriate
error message must be thrown on the client side of the RPC interaction.
Third, many RPC mechanisms enable introspection, which allows clients to
see a list of the calls that are supported by that RPC service, as well as the
arguments they take. Some RPC protocols require the client and server to
exchange extensive documents defining the library or API they support;
others only allow the client to retrieve a list of function names and
argument types; and still others allow no introspection at all. Python isn’t
great at supporting introspection because, unlike a statically typed language,
it doesn’t know the parameter types the programmer who wrote each
function intended. Fourth, each RPC mechanism must have an addressing
scheme that allows you to connect to a certain remote API. Some of these

systems are fairly complex, and they may even be able to link you to the
relevant server on your network for a certain activity without requiring you
to know its name beforehand. Other approaches are straightforward,
requiring only the IP address, port number, or URL of the service you wish
to use. Rather of constructing their own addressing system, these
technologies disclose the actual network addressing scheme.
Finally, when RPC calls are made by numerous separate client programmes
using different credentials, some RPC systems offer authentication, access
control, and even full impersonation of specific user accounts. However,
such characteristics are not always present; in fact, basic and widely used
RPC protocols frequently lack them totally. Simple RPC schemes rely on an
underlying protocol like HTTP to provide authentication, and they leave it
up to you to set up whatever passwords, public keys, or firewall restrictions
are required to secure the lower-level protocol if you want your RPC
service to be secure from unauthorised access.

XML-RPC
Let’s start our exploration of RPC techniques by looking at Python’s built-
in XML-RPC capabilities. This may appear to be an unsuitable choice for
the first scenario. After all, XML is known for being clumsy and verbose,
and XML-use RPC’s in new services has been dropping for years.
XML-RPC, on the other hand, has native support in Python’s Standard
Library because it was one of the earliest RPC protocols of the Internet era,
running natively over HTTP rather than requiring its own on-the-wire
protocol. As a result, none of the examples shown here will require third-
party modules. Although this limits the RPC server’s capabilities compared
to using a third-party library, it keeps the examples basic for this first
venture into RPC.

THE XML-RPC PROTOCOL

Purpose: Remote procedure calls

Standard: www.xmlrpc.com/spec

Runs atop: HTTP

Data types: int; float; unicode; list; dict with unicode keys;
with nonstandard extensions, datetime

and None

Libraries: xmlrpclib, SimpleXMLRPCServer, DocXMLRPCServer

If you’ve ever worked with raw XML, you’re aware that it doesn’t have any
data-type semantics. It can only represent items that contain other elements,
text strings, and text-string properties, but not integers. As a result, the
XML-RPC standard must add semantics to the plain XML document format
in order to describe how numbers should appear when converted to marked-
up text. The Python Standard Library makes writing an XML-RPC client or
server a breeze. Listing 18-1 depicts a simple server that runs a web server
on port 7001 and then monitors incoming Internet connections.

Listing 18-1. An XML-RPC Server
#!/usr/bin/env python3
Programming in Python: The Basics.
XML-RPC server
import operator, math
from xmlrpc.server import SimpleXMLRPCServer
from functools import reduce
def main():

server = SimpleXMLRPCServer((‘127.0.0.1’, 7001))
server.register_introspection_functions()
server.register_multicall_functions()
server.register_function(addtogether)
server.register_function(quadratic)
server.register_function(remote_repr)
print(“Server ready”)
server.serve_forever()

def addtogether(*things):
“””Add together everything in the list `things`.”””
return reduce(operator.add, things)

def quadratic(a, b, c):
“””Determine `x` values satisfying: `a` * x*x + `b` * x + c
== 0”””
b24ac = math.sqrt(b*b - 4.0*a*c)
return list(set([(-b-b24ac) / 2.0*a,
(-b+b24ac) / 2.0*a]))

def remote_repr(arg):
“””Return the `repr()` rendering of the supplied `arg`.”””
return arg

if __name__ == ‘__main__’:
main()

You don’t have to allocate an entire port to an RPC service like this because
an XML-RPC service stays at a single URL of a web site. Instead, you may
incorporate it into a standard web application that provides a variety of
other pages and even independent RPC services at other URLs. If you do
have an entire port to spare, the Python XML-RPC server is a simple
method to set up a web server that only handles XML-RPC requests.
The three sample functions provided by the server via XML-RPC (those
introduced to the RPC service via the register function() calls) are pretty
typical Python routines. And that, once again, is the whole idea of XML-
RPC: it allows you to make routines available for network invocation
without having to code them any differently than you would if they were
regular functions in your software.
The Python Standard Library’s SimpleXMLRPCServer is, as its name
implies, fairly basic; it can’t serve other web pages, it doesn’t comprehend
HTTP authentication, and you can’t ask it to provide TLS security without
subclassing it and adding further code. Nonetheless, it will serve you well
here, demonstrating some of the basic advantages and limitations of RPC
while also allowing you to get up and running in only a few lines of code.
In addition to the three calls that register the functions, two extra
configuration calls are done. Each of them enables an optional but common
feature of XML-RPC servers: an introspection routine that allows a client to
find out which RPC calls a server supports, as well as the ability to support
a multicall function that allows several individual function calls to be
bundled into a single network roundtrip.
Before you can attempt any of the next three programmes, you’ll need to
start this server, so open a command window and start it:
$ python xmlrpc_server.py
Server ready

On localhost port 7001, the server is currently accepting connections. All of
the standard addressing rules apply to this TCP server that you learned in
Chapters 2 and 3, so you’ll have to connect to it from another command

prompt on the same system unless you change the code to bind to an
interface other than localhost. Open a new command window and prepare
to try out the next three listings as I go over them. First, let’s see if the
introspection feature you enabled on this server works. This feature is
optional, and it may or may not be offered on many other XML-RPC
services you use online or deploy yourself.
Introspection is depicted in Listing 18-2 from the client’s perspective.

Listing 18-2. What Functions Does an XML-RPC Server Support?
#!/usr/bin/env python3
Programming in Python: The Basics.
XML-RPC client
import xmlrpc.client
def main():

proxy = xmlrpc.client.ServerProxy(‘http://127.0.0.1:7001’)
print(‘Here are the functions supported by this server:’)
for method_name in proxy.system.listMethods():
if method_name.startswith(‘system.’):
continue

signatures = proxy.system.methodSignature(method_name)
if isinstance(signatures, list) and signatures:
for signature in signatures:

print(‘%s(%s)’ % (method_name, signature))
else:
print(‘%s(...)’ % (method_name,))

method_help = proxy.system.methodHelp(method_name)
if method_help:
print(‘ ‘, method_help)

if __name__ == ‘__main__’:
main()

The introspection technique isn’t just a nice-to-have feature; it’s not even
mentioned in the XML-RPC specification! It allows clients to call a set of
special methods, all of which start with the string system to identify them
from regular methods. These unique techniques provide details on the
additional calls that are available. Let’s begin by invoking listMethods (). If
introspection is enabled, you will be given a list of additional method
names.

Let’s disregard the system methods in this example listing and only print
information about the remaining ones. You’ll try to get the signature of each
method to see what arguments and data types it accepts. The server is
written in Python, a language that does not have type declarations. it does
not actually know what data types functions expect:
$ python xmlrpc_introspect.py
Here are the functions supported by this server:
concatenate(...)
Add together everything in the list `things`.

quadratic(...)
Determine `x` values satisfying: `a` * x*x + `b` * x + c == 0

remote_repr(...)
Return the `repr()` rendering of the supplied `arg`.

However, you can see that while argument types aren’t provided in this
case, documentation strings are. In actuality, the SimpleXMLRPCServer
has retrieved and returned the function’s docstrings. In a real-world client,
you can come across two uses for introspection. To begin, if you’re building
a software that uses an XML-RPC service, the service’s web documentation
may provide human-readable assistance. Second, if you’re developing a
client that interacts with a number of comparable XML-RPC services but
differ in the methods they offer, a listMethods() call can assist you figure
out which servers provide certain commands. The goal of an RPC service,
as you may recall, is to make function calls in a target language appear as
natural as possible. Furthermore, as seen in Listing 18-3, the Standard
Library’s xmlrpclib provides a proxy object for making server function
calls. These calls resemble calls to local methods.

Listing 18-3. Making XML-RPC Requests
#!/usr/bin/env python3
-*- coding: utf-8 -*-
Programming in Python: The Basics.
XML-RPC client
import xmlrpc.client
def main():

proxy = xmlrpc.client.ServerProxy(‘http://127.0.0.1:7001’)
print(proxy.addtogether(‘x’, ‘ÿ’, ‘z’))
print(proxy.addtogether(20, 30, 4, 1))

print(proxy.quadratic(2, -4, 0))
print(proxy.quadratic(1, 2, 1))
print(proxy.remote_repr((1, 2.0, ‘three’)))
print(proxy.remote_repr([1, 2.0, ‘three’]))
print(proxy.remote_repr({‘name’: ‘john’,
‘data’: {‘age’: 49, ‘sex’: ‘M’}}))

print(proxy.quadratic(1, 0, 1))
if __name__ == ‘__main__’:
main()

When you run the preceding code against the example server, you’ll get
output that teaches you a lot about XML-RPC and RPC techniques in
general. Note how almost all of the calls work without issue, and how both
the calls in this listing and the functions themselves from Listing 18-1
appear to be fully regular Python; nothing about them is network-specific:
$ python xmlrpc_client.py
xÿz
55
[0.0, 8.0]
[-1.0]
[1, 2.0, ‘three’]
[1, 2.0, ‘three’]
{‘data’: {‘age’: [49], ‘sex’: ‘M’}, ‘name’: ‘john’}
Traceback (most recent call last):
...

xmlrpclib.Fault: <Fault 1: “<type
‘exceptions.ValueError’>:math domain error”>

However, there are a few points to which you should pay attention. To
begin, keep in mind that XML-RPC has no constraints on the argument
types you provide. Addtogether() can be called with strings or numbers, and
any number of parameters can be passed. The protocol itself is
unconcerned; it has no preconceived notions about how many arguments or
types a function should accept. Of course, if you called a language that
cared—or even a Python method that didn’t accept variable-length
argument lists—the distant language might throw an exception. But that
would be the language, not the XML-RPC protocol itself, that would be
complaining. Second, keep in mind that, like Python and many other
languages in its ancestry, XML-RPC function calls can take many

arguments but only return a single result value. Even if the value is a
complicated data structure, it will be returned as a single result. And the
protocol doesn’t care if the result is a consistent form or size; the amount of
elements returned by quadratic() (yeah, I was tired of all the simple add()
and subtract() math functions that tend to get used in XML-RPC examples!)
changes without causing the network logic to complain.
Third, keep in mind that the large number of Python data types must be
condensed to the lower set that XML-RPC supports. XML-RPC, in
particular, only supports one sequence type: the list. When you pass a tuple
of three items to remote repr(), the server receives a list of three items
instead of a tuple. When RPC protocols are combined with a specific
language, this is a common feature. Types that they don’t directly support
must either be transferred to a different data structure (the tuple in this case
was converted to a list) or an exception must be raised claiming that a
specific parameter type cannot be communicated.
Fourth, in XML-RPC, sophisticated data structures can be recursive. You’re
not limited to arguments containing only one level of complex data type. .
As you can see, passing a dictionary with another dictionary as one of its
values works perfectly.
Finally, as promised earlier, an exception in the server function made it
back across the network successfully and was represented locally on the
client by an xmlrpclib.
Instance of a fault. This instance provided the name of the remote exception
as well as the accompanying error message. XML-RPC exceptions will
always have this structure, regardless of the language used to implement the
server functions. The traceback isn’t very useful; while it informs you
which call in the code caused the issue, the innermost layers of the stack are
just the xmlrpclib’s code. I’ve gone through the basic features and
limitations of XML-RPC so far. You can learn about a few more features by
consulting the documentation for either the client or server module in the
Python Standard Library. By passing extra arguments to the ServerProxy
class, you may learn how to use TLS and authentication in particular.
However, there is one feature worth mentioning here: the ability to make
many calls in a network roundtrip if the server enables it (this is another of
those optional extensions), as seen in Listing 18-4.

Listing 18-4. Multicalling with XML-RPC
#!/usr/bin/env python3
Programming in Python: The Basics.
XML-RPC client performing a multicall
import xmlrpc.client
def main():

proxy = xmlrpc.client.ServerProxy(‘http://127.0.0.1:7001’)
multicall = xmlrpc.client.MultiCall(proxy)
multicall.addtogether(‘a’, ‘b’, ‘c’)
multicall.quadratic(2, -4, 0)
multicall.remote_repr([1, 2.0, ‘three’])
for answer in multicall():
print(answer)

if __name__ == ‘__main__’:
main()

When you run this script, check the server’s command window to ensure
that just one HTTP request is sent in order to respond to all three function
calls:
localhost - - [09/Oct/2019 00:16:19] “POST /RPC2 HTTP/1.0” 200
–

By the way, the ability to log messages like the one above can be disabled;
such logging is controlled by one of SimpleXMLRPCServer’s settings.
Unless you study the manual and setup the client and server differently, the
default URL used by both the server and the client is /RPC2. Before I go on
to another RPC technique, there are three final considerations to consider:

There are two additional data types that can be difficult to live
without, which is why many XML-RPC protocols offer them: dates
and None (also known as null or nil in other languages). Both the
client and server versions of Python include options for sending and
receiving nonstandard values.
XML-RPC does not support keyword arguments since few languages
are smart enough to support them.
Finally, keep in mind that dictionaries can only be passed if all of their
keys are strings, whether normal or Unicode. Some services get
around this by allowing a dictionary to be passed as a function’s final
argument—or by removing positional arguments entirely and using a

single dictionary argument for every function that specifies all of its
parameters by name. For more information on how to think about this
restriction, see the “Self-Documenting Data” section later in this
chapter.

Despite the fact that the whole goal of an RPC protocol like XML-RPC is
to allow you forget about the specifics of network transmission and focus
on normal programming, you should at least see what your calls will look
like on the wire! The sample client program’s initial call to quadratic() is as
follows:
<?xml version=’1.0’?>
<methodCall>
<methodName>quadratic</methodName>
<params>
<param>
<value><int>2</int></value>
</param>
<param>
<value><int>-4</int></value>
</param>
<param>
<value><int>0</int></value>
</param>
</params>
</methodCall>

The response to the preceding call looks like this:
<?xml version=’1.0’?>
<methodResponse>
<params>
<param>
<value><array><data>
<value><double>0.0</double></value>
<value><double>8.0</double></value>
</data></array></value>
</param>
</params>
</methodResponse>

JSON-RPC
JSON’s brilliant idea is to serialise data structures to strings using the
JavaScript computer language’s syntax. This means that using the eval()
function in a web browser, JSON strings may theoretically be converted
back to data. (However, because using a formal JSON parser with untrusted
data is often undesirable, most programmers use a formal JSON parser
instead of taking advantage of JavaScript compatibility.) This remote
procedure call method can make your data much more compact while also
simplifying your parsers and library code by adopting a syntax specifically
built for data rather than adapting a verbose document markup language
like XML.

THE JSON-RPC PROTOCOL

Purpose: Remote procedure calls

Standard: http://json-rpc.org/wiki/specification

Runs atop: HTTP

Data types: int; float; unicode; list; dict with unicode keys;
None

Libraries: many third-party, including jsonrpclib

Because the Python Standard Library does not support JSON-RPC, you’ll
have to rely on one of the many third-party options. On the Python Package
Index, you’ll discover these distributions. jsonrpclib-pelix was one of the
first libraries to support Python 3. You can test out the server and client
shown in Listings 18-5 and 18-6, respectively, if you deploy it in a virtual
environment (see Chapter 1).

Listing 18-5. A JSON-RPC Server
#!/usr/bin/env python3
Programming in Python: The Basics.
JSON-RPC server needing “pip install jsonrpclib-pelix”
from jsonrpclib.SimpleJSONRPCServer import SimpleJSONRPCServer
def lengths(*args):

“””Measure the length of each input argument.
Given N arguments, this function returns a list of N smaller

lists of the form [len(arg), arg] that each state the length
of
an input argument and also echo back the argument itself.
“””
results = []
for arg in args:
try:

arglen = len(arg)
except TypeError:

arglen = None
results.append((arglen, arg))

return results
def main():

server = SimpleJSONRPCServer((‘localhost’, 7002))
server.register_function(lengths)
print(“Starting server”)
server.serve_forever()

if __name__ == ‘__main__’:
main()

The server code is straightforward, as it should be for an RPC protocol. As
with XML-RPC, you simply specify the functions you want to make
available over the network, and they become queryable. (Alternatively, you
can pass an object, and all of its methods will be registered with the server
at the same time.)

Listing 18-6. . JSON-RPC Client
#!/usr/bin/env python3
Programming in Python: The Basics.
JSON-RPC client needing “pip install jsonrpclib-pelix”
from jsonrpclib import Server
def main():

proxy = Server(‘http://localhost:7002’)
print(proxy.lengths((1,2,3), 27, {‘Canopus’: -0.74,
‘Arcturus’: -0.05}))

if __name__ == ‘__main__’:
main()

Client code is similarly straightforward to write. You can learn a lot about
this protocol by sending various objects whose lengths you want to measure
and having the server echo those data structures back to you. To begin, keep
in mind that the protocol permits you to transmit as many parameters as you
like; it was unconcerned that it couldn’t deduce a static method signature
from the function. It’s comparable to XML-RPC, but it’s not the same as the
XML-RPC protocols designed for traditional, statically typed languages.
Second, note that the server’s None value in the response is unaffected. This
is because the protocol itself supports this value without the need to activate
any nonstandard extensions:
$ python jsonrpc_server.py
Starting server
[In another command window:]
$ python jsonrpc_client.py
[[3, [1, 2, 3]], [None, 27], [2, {‘Canopus’: -0.74,
‘Arcturus’: -0.05}]]

Third, keep in mind that JSON-RPC only supports one type of sequence,
therefore the client’s tuple had to be converted to a list in order to get
through. Of course, the most significant distinction between JSON-RPC and
XML-RPC is that the data payload in this case is a compact, elegant JSON
message that knows how to represent each data type natively. This is due to
the fact that both approaches perform an excellent job of concealing the
network from the code. When I use Wireshark on my localhost interface
while running this sample client and server, I can see the following
messages being sent:
{“version”: “1.1”,
“params”: [[1, 2, 3], 27, {‘Canopus’: -0.74, ‘Arcturus’:
-0.05}],
“method”: “lengths”}

{“result”: [[3, [1, 2, 3]], [null, 27],
[2, {‘Canopus’: -0.74, ‘Arcturus’: -0.05}]]}

Because of the popularity of JSON-RPC version 1, various competing
initiatives have been made to extend and supplement the protocol with new
capabilities. If you want to learn more about the present situation of the
standard and the debate surrounding it, you can conduct some research
online. You can use a solid third-party Python implementation for most

fundamental tasks and not bother about the argument over standard
extensions.
I’d be remiss if I didn’t disclose one key truth about this subject. Although
the above example is synchronous—the client sends a request and then
waits patiently for only a single answer while doing nothing productive in
the meantime—the JSON-RPC protocol does allow for id values to be
attached to each request. This means that you can send out many queries
before receiving any matching responses with the same id. I won’t go into
detail about the concept because, properly speaking, asynchrony goes
beyond the usual purpose of an RPC protocol. After all, function calls in
typical procedural languages are synchronous occurrences. If the concept
appeals to you, read the standard and then look into whether Python JSON-
RPC packages could be able to accommodate your asynchrony
requirements.

Data that Documents Itself
Both XML-RPC and JSON-RPC appear to allow a data structure that looks
quite similar to a Python dictionary, but with one unpleasant constraint. The
data structure is known as a struct in XML-RPC and an object in JSON.
However, to a Python programmer, it appears to be a dictionary, and your
first reaction will likely be annoyance at the fact that its keys cannot be
integers, floats, or tuples.
Let’s take a look at a specific example. Assume you have a dictionary of
physical element symbols arranged alphabetically by atomic number:
{1: ‘H’, 2: ‘He’, 3: ‘Li’, 4: ‘Be’, 5: ‘B’, 6: ‘C’, 7: ‘N’, 8:
‘O’}

If you need to send this dictionary via an RPC protocol, your first thought
would be to convert the numbers to strings so that the dictionary can be sent
as a struct or object. It turns out that, in the vast majority of circumstances,
this inclination is incorrect. Simply put, the struct and object are the same
thing. Keys and values in containers of any size are not supported by RPC
data structures. Instead, they’re made to link a restricted number of
predefined attribute names to the attribute values that they happen to have
for a specific object. If you try to pair random keys and values with a struct,
you may inadvertently make your service very difficult to use for users who
utilise statically typed programming languages. Instead, consider

dictionaries transmitted through RPCs to be similar to Python objects,
which often contain a narrow set of attribute names that are well-known to
your code. Similarly, the dictionaries you communicate through RPC
should only have a few predefined keys and their associated values.
All of this indicates that, if the dictionary described earlier is to be utilised
by a general-purpose RPC method, it should be serialised as a list of
explicitly named values:
[{‘number’: 1, ‘symbol’: ‘H’},
{‘number’: 2, ‘symbol’: ‘He’},
{‘number’: 3, ‘symbol’: ‘Li’},
{‘number’: 4, ‘symbol’: ‘Be’},
{‘number’: 5, ‘symbol’: ‘B’},
{‘number’: 6, ‘symbol’: ‘C’},
{‘number’: 7, ‘symbol’: ‘N’},
{‘number’: 8, ‘symbol’: ‘O’}]

The Python dictionary is shown in the preceding examples as it would be
passed into an RPC call, not how it would be rendered on the wire.
The significant difference in this technique (apart from the fact that it’s a lot
longer) is that the previous data structure was useless unless you knew what
the keys and values signified ahead of time. To give the data meaning, it
relied on convention. However, because you’ve included names with the
data, it’s self-descriptive: someone looking at these numbers on the wire or
in a computer has a better chance of predicting what they represent. Both
XML-RPC and JSON-RPC anticipate you to utilise their key-value types in
this manner, which is where the terms struct and object come from. They
are the terminology for an entity that holds named attributes in C and
JavaScript, respectively. This, once again, puts them closer to Python
objects than Python dictionaries.
If you have a Python dictionary like the one described here, you can convert
it to an RPC-compatible data structure and subsequently change it back
with the following code:
>>>elements = {1: ‘H’, 2: ‘He’}
>>>t = [{‘number’: key, ‘symbol’: value} for key, value in
elements.items()]
>>>t
[{‘symbol’: ‘H’, ‘number’: 1}, {‘symbol’: ‘He’, ‘number’: 2}]

>>> {obj[‘number’]: obj[‘symbol’]) for obj in t}
{1: ‘H’, 2: ‘He’}

If you find yourself building and destroying too many dictionaries to make
this transition desirable, named tuples (as they exist in the most recent
versions of Python) might be an even better approach to marshal such
values before delivering them.

Talking About Objects: Pyro and RPyC
If the goal of RPC is to make remote function calls appear to be local, the
two basic RPC techniques outlined previously fail catastrophically. XML-
RPC and JSON-RPC both operate perfectly if the functions you’re calling
only employ basic data types in their arguments and return values. Consider
how many times you’ll use more complex parameters and return values
instead! When you need to pass live items, what happens? For two reasons,
this is a difficult problem to solve.
First, different programming languages have different behaviours and
semantics for objects. As a result, object-supporting systems are either
limited to a single language or provide an anaemic description of how a
“object” can act selected from the lowest common denominator of the
languages they seek to support.
Second, it’s not always obvious how much state must move with an object
in order for it to be functional on another computer. True, an RPC
mechanism can simply begin iteratively delving into an object’s
characteristics and preparing those values for network transmission. On
systems of even moderate complexity, however, simple-minded recursion
into attribute values can lead to you walking most of the objects in memory.
And, once you’ve accumulated megabytes of data for transmission, what
are the possibilities that the remote end will actually require all of it?
Instead of sending the whole contents of each object supplied as a
parameter or returned as a value, send simply the object name, which the
remote end can use to inquire about the object’s properties if necessary.
This means that only the pieces of a highly connected object network that
the remote site truly requires are communicated, rather than the entire
graph. Both strategies, however, frequently result in pricey and slow
services. They can also make it difficult to keep track of how one object can

influence the responses supplied by another service on the other side of the
network. In fact, the task imposed by XML-RPC and JSON-RPC (i.e.,
breaking down the query you wish to ask a remote service into basic data
types that can be easily delivered) frequently ends up being software
architecture. The limitations on parameter and return value data types force
you to think through your service until you understand exactly what the
distant service requires and why. As a result, I advise against switching to a
more object-based RPC service solely to avoid having to build your remote
services and find out the data they require to perform their tasks.
There are various well-known RPC protocols, such as SOAP and CORBA,
that attempt to answer the big questions of how to support objects that may
be on one server but are passed to another on behalf of a client application
delivering an RPC message from a third server, to varying degrees. Unless a
contract or assignment clearly needs them to speak these protocols to
another existing system, Python programmers appear to shun these RPC
techniques like the plague. They are outside the scope of this book, and if
you need to utilise them, be prepared to spend at least an entire book on
each one, as they can be rather complicated!
When all you have are Python programmes that need to communicate with
one another, there is at least one compelling reason to use an RPC service
that is familiar with Python objects and their behaviour. Python has a lot of
sophisticated data types, thus trying to “speak down” to the dialect of
constrained data formats like XML-RPC and JSON-RPC can be a waste of
time. This is particularly true when Python dictionaries, sets, and datetime
objects would perfectly convey what you want to say. Pyro and RPyC are
two Python-native RPC systems worth mentioning.
http://pythonhosted.org/Pyro4/ is the website for the Pyro project. This
well-known RPC library is based on the Python pickle module and can send
any type of input and response value that is pickle-able. Essentially, if an
item and its attributes can be reduced to their basic kinds, it can be sent.
Pyro, on the other hand, will not work if the values you want to send or
receive are ones that the pickle module chokes on. (Alternatively, you could
look at pickle documentation in the Python Standard Library.) If Python
can’t find out how to pickle a class, this library contains instructions on how
to make it pickle-able.)

http://pythonhosted.org/Pyro4/

An RPyC Example
http://rpyc.readthedocs.org/en/latest/ is the website for the RPyC project.
The approach to objects in this project is far more advanced. Indeed, it
resembles the CORBA model, in which the real data sent across the
network is a reference to an object that may be used to call back and
activate more of its methods later if the receiver need it. Security appears to
have received greater attention in the most current version, which is vital if
you are allowing other businesses to use your RPC protocol. After all,
allowing someone to provide you data to unpick is practically allowing
them to run arbitrary code on your computer! Listings 18-7 and 18-8 show
an example client and server, respectively. These listings should be studied
thoroughly if you want an example of the remarkable things that a system
like RPyC makes possible.

Listing 18-7. An RPyC Client
#!/usr/bin/env python3
Programming in Python: The Basics.
RPyC client
import rpyc
def main():

config = {‘allow_public_attrs’: True}
proxy = rpyc.connect(‘localhost’, 18861, config=config)
fileobj = open(‘testfile.txt’)
linecount = proxy.root.line_counter(fileobj, noisy)
print(‘The number of lines in the file was’, linecount)

def noisy(string):
print(‘Noisy:’, repr(string))

if __name__ == ‘__main__’:
main()

Listing 18-8. An RPyC Server
#!/usr/bin/env python3
Programming in Python: The Basics.
RPyC server
import rpyc
def main():

from rpyc.utils.server import ThreadedServer

http://rpyc.readthedocs.org/en/latest/

t = ThreadedServer(MyService, port = 18861)
t.start()

class MyService(rpyc.Service):
def exposed_line_counter(self, fileobj, function):
print(‘Client has invoked exposed_line_counter()’)
for linenum, line in enumerate(fileobj.readlines()):
function(line)
return linenum + 1

if __name__ == ‘__main__’:
main()

The client may appear to be a typical software that uses an RPC service at
first glance. After all, it uses a network address to call the connect()
function and then accesses the functions of the returned proxy object as if
the calls were made locally. If you look closely, though, you may see some
astonishing changes! The first argument to the RPC function is a live file
object, which may or may not exist on the server. The other argument is a
function, which is a live entity rather than the normal inert data structure
supported by RPC protocols.
The server offers a single method that accepts a file object and a callable
function as parameters. It uses these in the same way as a conventional
Python application that runs in a single process would. It performs
readlines() on the file object, expecting the return result to be an iterator
that can be used in a for loop. Finally, the server invokes the function object
that was provided in, regardless of where the function actually resides (in
the client). Note that, absent specific permission, RPyC’s new security
architecture only allows clients to call methods that begin with the special
prefix exposed_.
Looking at the output created by executing the client is extremely
enlightening, given that a short testfile.txt exists in the current directory and
contains a few wise words:
$ python rpyc_client.py
Noisy: ‘Simple\n’
Noisy: ‘is\n’
Noisy: ‘better\n’
Noisy: ‘than\n’
Noisy: ‘complex.\n’

The number of lines in the file was 5

Two truths are equally surprising. First, the server was able to iterate over
numerous readlines() results, despite the fact that this required the client to
invoke file–object logic multiple times. Second, the server did not somehow
duplicate the code object of the noisy() method so that it could run it
directly; instead, it repeatedly invoked the function on the client side of the
connection, with the proper argument each time!
What’s going on here? Simply said, RPyC is the polar opposite of the other
RPC techniques we’ve looked at thus far. RPyC only serialises absolutely
immutable things, such as Python integers, floats, strings, and tuples,
whereas all other techniques strive to serialise and transfer as much
information across the network as possible before leaving the remote code
to either succeed or fail with no more information. For everything else, it
sends a remote object identification, which allows the remote side to access
attributes and invoke methods on those live objects by reaching back into
the client. This method generates a significant amount of network traffic. If
many object operations must transit back and forth between the client and
server before an operation is completed, it can cause a substantial delay. It’s
also a problem to provide sufficient security. I chose to make the client
connection with a blanket assertion of allow public attrs to provide the
server permission to call things like readlines() on the client’s own objects.
If you’re not comfortable handing over that much power to your server
code, you’ll have to spend some time fine-tuning the permissions such that
your activities go smoothly without exposing too much potentially
damaging functionality. As a result, the method can be costly, and security
might be difficult if the client and server do not trust one another.
When you need it, though, there’s nothing quite like RPyC for allowing
Python objects on opposite sides of a network barrier to collaborate. You
can even play the game with more than two processes; see the RPyC docs
for further information.
The fact that RPyC works so well with plain Python functions and objects
without requiring them to inherit from or mix in any extra network
capabilities is a testament to Python’s ability to intercept object activities
and treat them in our own way—even by asking an inquiry across the
network!

Message Queues, RPC, and Web Frameworks
If you’re working with RPC services, be open to experiment with different
transmission techniques. Many Python programmers who need to speak the
XML-RPC protocol, for example, do not use the classes offered in the
Python Standard Library. After all, an RPC service is frequently deployed
as part of a larger web site, and having to maintain a separate server on a
different port just to handle this type of web request can be extremely
inconvenient.
There are three effective techniques to look at moving past too simple
example code that makes it appear as if you need to start a new web server
for each RPC service you want to make available from a certain site. First,
see whether you can leverage WSGI’s pluggability to install an RPC service
that you’ve integrated into a bigger web project that you’re delivering. By
running both your regular web application and your RPC service as WSGI
servers behind a filter that verifies the incoming URL, you may run both
services on the same hostname and port number. It also allows you to take
advantage of the fact that your WSGI web server may already support
threading and scalability at a level that the RPC service does not.
If your RPC service is at the bottom of a bigger WSGI stack, you can use it
to add authentication if the RPC service doesn’t have it. Second, rather of
needing a separate RPC library, you might discover that your preferred web
framework already knows how to host an XML-RPC, JSON-RPC, or other
type of RPC call. This means you can declare RPC endpoints with the same
simplicity as you would specify views or RESTful services in your web
framework. Consult the documentation for your web framework and
conduct a web search for RPC-friendly third-party plug-ins.
Third, you might want to consider delivering RPC messages via an alternate
transport that performs a better job of routing calls to servers that are ready
to receive them than the protocol’s original transport. When you want a full
rack of servers to be busy distributing the load of incoming requests,
message queues, which were explored in Chapter 8, are typically an
appropriate vehicle for RPC calls.

Errors in the Network: How to Recover

Of fact, there is one truth of network life that RPC services cannot readily
conceal: the network can be down when you try to initiate a call, or it can
even go down in the middle of an RPC call.
When a call is interrupted and does not complete, most RPC protocols
simply raise an exception. Note that an error does not always mean that the
remote end did not process the request—it could have done so, but the
network broke down just as the last packet of the reply was being
transmitted. Your call would have theoretically succeeded in this situation,
and the data would have been successfully added to the database or written
to a file, or whatever the RPC call does. You will, however, believe the call
failed and wish to try it again, perhaps storing the same data twice. When
building programmes that delegate some function calls via the network,
there are a few strategies you can employ.
To begin, make an effort to build services that provide idempotent
operations that can be safely retried. Although an operation such as
“remove $10 from my bank account” is inherently risky because retrying it
could result in additional $10 being removed from your account, An
operation like “conduct transaction 583812, which deducts $10 from my
account” is absolutely secure because the server can recognise that your
request is a repeat and declare success without actually repeating the
deduction by saving the transaction number.
Second, follow Chapter 5’s advice: instead of using try...except wherever an
RPC call is made, try using try and except to surround bigger portions of
code that have a firm semantic meaning and can be reattempted or
recovered from more cleanly. If you use an exception handler for every call,
you’ll lose the majority of the benefits of RPC: Your code should be easy to
develop and not require you to constantly monitor the fact that function
calls are actually routed over the network! If you decide that your software
should retry a failed call, you may use the exponential back-off technique
for UDP presented in Chapter 3 as an example. This method allows you to
avoid slamming an overburdened server and exacerbating the problem.
Finally, be cautious about working around the network’s loss of exception
detail. Unless you’re using a Python-aware RPC method, you’ll probably
discover that what would typically be a polite KeyError or ValueError on
the remote side becomes some type of RPC-specific problem whose text or

numeric error code you have to scrutinise in order to figure out what went
wrong.

Conclusion
RPC allows you to create what appear to be conventional Python function
calls but actually call a function on another server via the network. They
accomplish this by serialising the arguments so that they can be
communicated, and then doing the same with the returned value.
All RPC protocols function in a similar way: you establish a network
connection and then call on the proxy object you’re provided to invoke
code on the remote end. The Python Standard Library supports the older
XML-RPC protocol natively, although good third-party libraries exist for
the sleeker and more current JSON-RPC standard. Only a few data types
can be passed between the client and the server using either of these
protocols. If you want a far more comprehensive list of Python data types,
check out the Pyro system, which can connect Python programmes over a
network and includes substantial support for native Python types. The
RPyC system is much more comprehensive, allowing actual objects to be
exchanged across systems and method calls on those objects to be routed to
the system where the object resides.
When you go through the content in this book again, you’ll be inclined to
think of each chapter as being about RPC in some way. That is, information
is sent between a client programme and a server through an agreement on
what a request will entail and how a response would appear. Now that
you’ve studied RPC, you’ve seen this interaction at its most basic level,
meant to permit arbitrary communication rather than any defined action.
Always consider whether your problem requires the flexibility of RPC or
whether the transaction between your client and server could be reduced to
one of the simpler, limited-purpose protocols discussed earlier in this book
when implementing new services—and especially when you’re tempted to
use RPC. You will be amply rewarded by networked systems that are
simple, dependable, and easy to maintain if you select the proper protocol
for each challenge you confront, incurring no more complexity than is
necessary.

	Cover Page
	Title Page
	Copyright Page
	Dedication Page
	About the Author
	About the Reviewer
	Acknowledgements
	Preface
	Errata
	Table of Contents
	1. Client-Server Networking: An Overview
	Structure
	Objective
	The Foundation: Stacks and Libraries
	Layers of Application
	Talking a protocol
	A Network Conversation in its Natural State
	Turtles, Turtles, Turtles
	The process of encoding and decoding
	The Internet Protocol (IP)
	Internet Protocol (IP Addresses)
	Routing
	Fragmentation of packets
	Learning More About internet protocol
	Conclusion

	2. UDP(User Datagram Protocol)
	Structure
	Objective
	Numbers of particular service on the particular system.
	Communications connection point (Socket)
	Clients who are promiscuous and unwelcome responses
	Backoff, blocking, and timeouts are all examples of unreliability.
	UDP Socket Connection
	The Use of Request IDs Is a Good Idea
	From Binding till Interfaces
	Fragmentation of UDP
	Options for Sockets
	Broadcast
	When Should We Use UDP?
	Conclusion

	3. Transmission control protocol (TCP)
	Structure
	Objective
	How transmission control protocol works
	When to use transmission control protocol
	TCP Sockets Mean?
	TCP Client and Server
	Each conversation one socket.
	Address that is in use.
	From Binding to Interfaces
	Deadlock
	Half-Open Connections, Closed Connections
	TCP Streams as Files
	Conclusion

	4. Domain name system & socket names
	Structure
	Objective
	Sockets and Hostnames
	Five Socket Coordinates
	IPv6
	Modern Address Resolution
	Bind Your Server to a Port Using getaddrinfo()
	To connect to a service, use getaddrinfo().
	Getting a Canonical Hostname with getaddrinfo()
	Other getaddrinfo() Flags
	Primitive Name Service Routines
	In Your Own Code, Use getsockaddr()
	DNS Protocol
	Why Shouldn’t Use Raw DNS?
	Using Python to do a DNS query
	Getting Mail Domains Resolved
	Conclusion.

	5. Data and Errors on the Internet
	Structure
	Objectives
	Strings and Bytes
	Character Strings
	Network Byte Order and Binary Numbers
	Quoting and framing
	Pickles and Self-delimiting Formats
	JSON And XML
	Compression
	Exceptions in the Network
	Raising More Specific Exceptions
	Network Exceptions: Detecting and Reporting
	Conclusion

	6. SSL/TLS
	Structure
	Objectives
	What TLS Fails to Secure
	What Is the Worst That Could Happen?
	Producing Certificates
	TLS Offloading
	Default Contexts in Python 3.4
	Wrapping Sockets in Different Ways
	Ciphers chosen by hand and perfect forward security
	Support for TLS Protocol
	Details of Studying
	Conclusion

	7. Architecture of the Server
	Structure
	Objectives
	A Few Remarks on Deployment
	A Basic Protocol
	A single-threaded server.
	Multiprocess and Threaded Servers
	The SocketServer Framework of the Past
	Async Servers
	Callback-Style asyncio
	Coroutine-Style asyncio
	The asyncore Legacy Module
	The Best of Both Worlds
	Under the Influence of inetd
	Conclusion

	8. Message Queues and Caches
	Structure
	Objectives
	Using Memcached (memory caching)
	Hashing and Sharding
	Message Queues
	Using Python’s Message Queues
	Conclusion

	9. HTTP Clients
	Structure
	Objectives
	Python Client Libraries
	Framing, Encryption, and Ports
	Methods
	Hosts and Paths
	Status Codes
	Validation and Caching
	Encoding of Content
	Negotiation of Content
	Type of Content
	Authentication over HTTP
	Cookies
	Keep-Alive, Connections, and httplib
	Conclusion

	10. Servers that handle HTTP
	Structure
	Objectives
	Web Server Gateway Interface (WSGI)
	Server-Frameworks that are asynchronous
	Proxies (Forward and Reverse)
	four architecture style.
	Python on Apache
	Pure-Python HTTP Servers on the Rise
	The Advantages of Reverse Proxies
	Platforms as a Service (PaaS)
	The REST Question and GET and POST Patterns
	Web Server Gateway Interface (WSGI)Without a Framework
	Conclusion

	11. www (world wide web)
	Structure
	Objectives
	URLs and hypermedia
	Creating and Parsing URLs
	URLs that are relative
	HTML(Hypertext Markup language)
	Using a Database to Read and Write
	A Horrible Internet Program (in Flask)
	The HTTP Methods and Forms Of Dance
	When Forms Use Inappropriate Methods
	Cookies that are safe and those that are not
	Cross-Site Scripting that isn’t persistent
	Cross-Site Scripting that Remains Persistent
	Forgery of Cross-Site Requests
	The Enhanced Software
	Django’s Payments Application
	Choosing a Framework for a Website
	WebSockets
	Scraping the Internet
	Obtaining Pages
	Pages for Scraping
	Recursive Scraping
	Conclusion

	12. E-mail Construction And Parsing
	Structure
	Objectives
	Format of an Email Message
	Putting Together an E-Mail Message
	HTML and Multimedia Enhancement
	Content Creation
	E-mail Message Parsing
	MIME Parts on the Move
	Encodings for Headers
	Dates Parsing
	Conclusion

	13. Simple Mail Transfer Protocol(SMTP)
	Structure
	Objectives
	Webmail Services vs. E-mail Clients
	The Command Line Was the Beginning
	Clients are on the rise
	The Transition to Webmail
	SMTP’s Functions
	E-mail transmission
	The Envelope Recipient and the Headers
	Several Hops
	The SMTP Library is an introduction to the SMTP protocol
	Error Handling and Debugging Conversations
	Using EHLO to Gather Information
	Secure Sockets Layer (SSL) and Transport Layer Security (TLS)
	SMTP authentication
	SMTP Pointers
	Conclusion

	14. Post Office Protocol(POP)
	Structure
	Objectives
	Compatibility of POP Servers
	Authenticating and connecting
	Getting Access to Mailbox Information
	Messages are downloaded and deleted.
	Conclusion

	15. Internet Message Access Protocol (IMAP)
	Structure
	Objectives
	IMAP in Python: An Overview
	IMAPClient
	Folder Inspection
	UIDs vs. Message Numbers
	Message Intervals
	Information in Brief
	Obtaining a Complete Mailbox
	Individual Message Downloading
	Messages Can Be Flagged and Deleted
	Messages Can Be Deleted
	Searching
	Folders and Messages Manipulation
	Asynchrony
	Conclusion

	16. SSH and Telnet
	Structure
	Objectives
	Automation using the command line
	Expansion of the Command Line and Quoting
	Arguments to Unix commands can contain (almost) any character.
	Characters I’ve Quoted for Protection
	Windows’ Horrible Command Line
	In a terminal, things are different.
	Terminals are responsible for buffering
	Telnet
	SSH: The Secure Shell
	SSH: A Quick Overview
	Host Keys for SSH
	Authentication with SSH
	Individual Commands and Shell Sessions
	SFTP (SSH File Transfer Protocol)
	Additional Features
	Conclusion

	17. File Transfer Protocol (FTP)
	Structure
	Objectives
	What to Do If You Can’t Use FTP
	Channels of Communication
	In Python, how to use FTP
	Binary and ASCII Files
	Binary Downloading (Advanced)
	Data Uploading
	Uploading Binary Data in an Advanced Way
	Error Handling
	Searching via directories
	Detecting Directories and Downloading in Recursive Mode
	Creating and deleting directories
	Using FTP in a Secure Manner
	Conclusion

	18. Remote Procedure Call (RPC)
	Structure
	Objectives
	RPC’s characteristics
	XML-RPC
	JSON-RPC
	Data that Documents Itself
	Talking About Objects: Pyro and RPyC
	An RPyC Example
	Message Queues, RPC, and Web Frameworks
	Errors in the Network: How to Recover
	Conclusion

